1
|
Roy A, Banerjee P, Paul I, Ghosh R, Ray S. Integrating structure-guided and fragment-based inhibitor design to combat bedaquiline resistant Mycobacterium tuberculosis: a molecular dynamics study. J Biomol Struct Dyn 2024:1-39. [PMID: 39714098 DOI: 10.1080/07391102.2024.2441426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/24/2024] [Indexed: 12/24/2024]
Abstract
The first FDA approved, MDR-TB inhibitory drug bedaquiline (BDQ), entraps the c-ring of the proton-translocating F0 region of enzyme ATP synthase of Mycobacterium tuberculosis, thus obstructing successive ATP production. Present-day BDQ-resistance has been associated with cardiotoxicity and mutation(s) in the atpE gene encoding the c subunit of ATP synthase (ATPc) generating five distinct ATPc mutants: Ala63→Pro, Ile66→Met, Asp28→Gly, Asp28→Val and Glu61→Asp. We created three discrete libraries, first by repurposing bedaquiline via scaffold hopping approach, second one having natural plant compounds and the third being experimentally derived analogues of BDQ to identify one drug candidate that can inhibit ATPc activity more efficiently with less toxic properties. For this purpose, we adopted techniques like molecular dynamics simulation, virtual screening, PCA, DCCM, binding affinity analysis to gauge structure-function relationship of the L136-ATPc complexes. L136 was found to induce a distinguishable conformational change in the bound ATPc which captivated the c9 rotor ring. L136 displays a binding free energy of -57.294, -59.027, -57.273, -58.726, -55.889 and -58.651 kcal/mol for ATPc_WT and the five respective mutants. The pIC50 value for the L136 ligand for the same proteins was unveiled to be 6.760, 7.285, 6.898, 7.222, 6.987 and 7.687. Moreover, L136 exhibited a strong ADMET profile. Furthermore, we discovered that the change in the hydrophobic platform in ATPc mutants hinders BDQ binding, which is overcome by L136, ensuring efficient binding and providing an assessment of L136's mechanism of ATPc inhibition. L136 provides a scope for in vivo test for future clinical drug trials.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Prantik Banerjee
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ritam Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
2
|
Harikishore A, Grüber G. Mycobacterium tuberculosis F-ATP Synthase Inhibitors and Targets. Antibiotics (Basel) 2024; 13:1169. [PMID: 39766559 PMCID: PMC11672644 DOI: 10.3390/antibiotics13121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Mycobacteria tuberculosis (Mtb) infection causes tuberculosis (TB). TB is one of the most intractable infectious diseases, causing over 1.13 million deaths annually. Under harsh growing conditions, the innate response of mycobacteria is to shut down its respiratory metabolism to a basal level, transit into a dormant, non-replicating phase to preserve viability, and establish latent infection. Mtb utilizes non-canonical regulatory mechanisms, such as alternative oxidase pathways, to survive in low oxygen/nutrient conditions. The bacterium's survival in its native microenvironmental niches is aided by its ability to evolve mutations to drug binding sites, enhance overexpression of various enzymes that activate β-lactam antibiotics hydrolysis, or stimulate efflux pathways to ward off the effect of antibiotics. Bedaquiline and its 3,5-dialkoxypyridine analogs, sudapyridine and squaramide S31f, have been shown to be potent Mtb F1FO-ATP synthase inhibitors of replicating and non-replicating Mtb and have brought oxidative phosphorylation into focus as an anti-TB target. In this review, we attempt to highlight non-canonical structural and regulatory pathogen-specific epitopes of the F1-domain, ligand development on such sites, structural classes of inhibitors targeting the Fo-domain, and alternative respiratory metabolic responses that Mtb employs in response to bedaquiline to ensure its survival and establish latent infection.
Collapse
Affiliation(s)
- Amaravadhi Harikishore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
3
|
Chasák J, Oorts L, Dak M, Šlachtová V, Bazgier V, Berka K, De Vooght L, Smiejkowska N, Calster KV, Van Moll L, Cappoen D, Cos P, Brulíková L. Expanding the squaramide library as mycobacterial ATP synthase inhibitors: Innovative synthetic pathway and biological evaluation. Bioorg Med Chem 2023; 95:117504. [PMID: 37871508 DOI: 10.1016/j.bmc.2023.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Mycobacterial ATP synthase is a validated therapeutic target for combating drug-resistant tuberculosis. Inhibition of this enzyme has been featured as an efficient strategy for the development of new antimycobacterial agents against drug-resistant pathogens. In this study, we synthesised and explored two distinct series of squaric acid analogues designed to inhibit mycobacterial ATP synthase. Among the extensive array of compounds investigated, members of the phenyl-substituted sub-library emerged as primary hits. To gain deeper insights into their mechanisms of action, we conducted advanced biological studies, focusing on the compounds displaying a direct binding of a nitrogen heteroatom to the phenyl ring, resulting in the highest potency. Our investigations into spontaneous mutants led to the validation of a single point mutation within the atpB gene (Rv1304), responsible for encoding the ATP synthase subunit a. This genetic alteration sheds light on the molecular basis of resistance to squaramides. Furthermore, we explored the possibility of synergy between squaramides and the reference drug clofazimine using a checkerboard assay, highlighting the promising avenue for enhancing the effectiveness of existing treatments through combined therapeutic approaches. This study contributes to the expansion of investigating squaramides as promising drug candidates in the ongoing battle against drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Jan Chasák
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Lauren Oorts
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Milan Dak
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Veronika Šlachtová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Václav Bazgier
- Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Natalia Smiejkowska
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Kevin Van Calster
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), S7, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucie Brulíková
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Bashir M, Arshad M, Begum R, Aggarwal VK. Application of Enantioselective Sulfur Ylide Epoxidation to a Short Asymmetric Synthesis of Bedaquiline, a Potent Anti-Tuberculosis Drug. Org Lett 2023; 25:4281-4285. [PMID: 37284829 PMCID: PMC10278180 DOI: 10.1021/acs.orglett.3c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 06/08/2023]
Abstract
A highly selective asymmetric synthesis of a potent anti-TB drug (-)-bedaquiline is accomplished using sulfur ylide asymmetric epoxidation, employing (+)-isothiocineole as an inexpensive and readily available chiral sulfide. Excellent enantioselectivity (er 96:4) and diastereoselectivity (dr 90:10) were obtained for the construction of the key diaryl epoxide, which was subsequently subjected to a highly regioselective ring opening (96:4). The synthesis was completed in nine steps starting from commercially available aldehyde in 8% overall yield.
Collapse
Affiliation(s)
- Maryam Bashir
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Centre
for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Arshad
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Robina Begum
- Centre
for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Varinder K. Aggarwal
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
5
|
Kelam LM, Wani MA, Dhaked DK. An update on ATP synthase inhibitors: A unique target for drug development in M. tuberculosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:87-104. [PMID: 37105260 DOI: 10.1016/j.pbiomolbio.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
ATP synthase is a key protein in the oxidative phosphorylation process, as it aids in the effective production of ATP (Adenosine triphosphate) in all life's of kingdoms. ATP synthases have distinctive properties that contribute to efficient ATP synthesis. The ATP synthase of mycobacterium is of special relevance since it has been identified as a target for potential anti-TB molecules, especially Bedaquiline (BDQ). Better knowledge of how mycobacterial ATP synthase functions and its peculiar characteristics will aid in our understanding of bacterial energy metabolism adaptations. Furthermore, identifying and understanding the important distinctions between human ATP synthase and bacterial ATP synthase may provide insight into the design and development of inhibitors that target specific ATP synthase. In recent years, many potential candidates targeting the ATP synthase of mycobacterium have been developed. In this review, we discuss the druggable targets of the Electron transport chain (ETC) and recently identified potent inhibitors (including clinical molecules) from 2015 to 2022 of diverse classes that target ATP synthase of M. tuberculosis.
Collapse
Affiliation(s)
- Lakshmi Mounika Kelam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Devendra K Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
6
|
Barbaro L, Nagalingam G, Triccas JA, Tan L, West NP, Priebbenow DL, Baell JB. Discovery of Anti-tubercular Analogues of Bedaquiline with Modified A-, B- and C-Ring Subunits. ChemMedChem 2023; 18:e202200533. [PMID: 36259365 DOI: 10.1002/cmdc.202200533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/16/2022] [Indexed: 01/24/2023]
Abstract
To date, the clinical use of the anti-tubercular therapy bedaquiline has been somewhat limited due to safety concerns. Recent investigations determined that modification of the B- and C-ring units of bedaquiline delivered new diarylquinolines (for example TBAJ-587) with potent anti-tubercular activity yet an improved safety profile due to reduced affinity for the hERG channel. Building on our recent discovery that substitution of the quinoline motif (the A-ring subunit) for C5-aryl pyridine groups within bedaquiline analogues led to retention of anti-tubercular activity, we investigated the concurrent modification of A-, B- and C-ring units within bedaquiline variants. This led to the discovery that 4-trifluoromethoxyphenyl and 4-chlorophenyl pyridyl analogues of TBAJ-587 retained relatively potent anti-tubercular activity and for the 4-chlorophenyl derivative in particular, a significant reduction in hERG inhibition relative to bedaquiline was achieved, demonstrating that modifications of the A-, B- and C-ring units within the bedaquiline structure is a viable strategy for the design of effective, yet safer (and less lipophilic) anti-tubercular compounds.
Collapse
Affiliation(s)
- Lisa Barbaro
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, 3052, Parkville, Victoria, Australia
| | - Gayathri Nagalingam
- School of Medical Sciences and Marie Bashir Institute, The University of Sydney, 2006, Sydney, NSW, Australia
| | - James A Triccas
- School of Medical Sciences and Marie Bashir Institute, The University of Sydney, 2006, Sydney, NSW, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland, 4072, St Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, 4067 St., Lucia, Queensland, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Bioscience, The University of Queensland, 4072, St Lucia, Queensland, Australia.,Australian Infectious Diseases Research Centre, 4067 St., Lucia, Queensland, Australia
| | - Daniel L Priebbenow
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, 3052, Parkville, Victoria, Australia.,School of Chemistry, The University of Melbourne, 3010, Parkville, Victoria, Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, 3052, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Huang Z, Luo W, Xu D, Guo F, Yang M, Zhu Y, Shen L, Chen S, Tang D, Li L, Li Y, Wang B, Franzblau SG, Ding CZ. Discovery and preclinical profile of sudapyridine (WX-081), a novel anti-tuberculosis agent. Bioorg Med Chem Lett 2022; 71:128824. [PMID: 35636648 DOI: 10.1016/j.bmcl.2022.128824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Multidrug resistant tuberculosis (MDR-TB) remains a major human health challenge. Bedaquiline was approved in 2012 by the US FDA, and listed by WHO as a treatment for multidrug-resistant tuberculosis (MDR-TB) in 2018. However, the side effects of bedaquiline including the risk of unexplained mortality, QTc prolongation and hepatotoxicity limit its wide clinical use. Based on bedaquiline, we describe herein discovery and development of a novel diarylpyridine series, which led to identification of WX-081 (sudapyridine, 21l). It displayed excellent anti-mycobacterial activity against M. tuberculosis H37Rv in vitro and in vivo and low cytotoxicity; additionally WX-081 had excellent pharmacokinetic parameters in animals, better lung exposure and lower QTc prolongation potential compared to bedaquiline. WX-081 is currently under clinical phase II development (NCT04608955).
Collapse
Affiliation(s)
- Zhigang Huang
- WuXi AppTec, 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Wei Luo
- WuXi AppTec, 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Deming Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Fengxun Guo
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Meng Yang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yusong Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Liang Shen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shuhui Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Dongdong Tang
- WuXi AppTec, 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China
| | - Lei Li
- Shanghai Jiatan Biotech Ltd., a subsidiary of Guangzhou JOYO Pharma Ltd., Shanghai, China
| | - Yongguo Li
- Shanghai Jiatan Biotech Ltd., a subsidiary of Guangzhou JOYO Pharma Ltd., Shanghai, China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Charles Z Ding
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.
| |
Collapse
|