1
|
Khan A, Anwar M, Rehman AU, Shokouhimehr M, Reis NM, Kalhoro KA, Zhang C, Liu Z. Biorecognition-based electrochemical sensors for highly sensitive C-reactive protein detection: A review. Int J Biol Macromol 2025; 304:140829. [PMID: 39938854 DOI: 10.1016/j.ijbiomac.2025.140829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Highly sensitive C-reactive protein (hsCRP) is a widely recognized biomarker for inflammation and cardiovascular diseases and plays a critical role in early diagnosis, risk assessment, and treatment monitoring. The development of sensitive and selective techniques for hsCRP detection is of paramount importance for clinical diagnostics. Electrochemical sensors have emerged as promising alternatives to traditional methods, offering rapid, cost-effective, and portable solutions for hsCRP analysis. This review comprehensively discusses advancements in biorecognition-based electrochemical sensors for hsCRP detection, focusing on label- and label-free approaches. This review highlights the sensor principles, designs, and performance, and emphasizes their advantages as well as limitations in various target applications. Recent studies have shown the potential of both label- and label-free-based sensors to achieve low detection limits and wide linear ranges comparable to traditional methods. In addition, we discuss the mechanisms, challenges, and future directions of biorecognition-based electrochemical sensors for hsCRP detection. This innovation can potentially revolutionize the diagnosis and treatment of cardiovascular and inflammatory diseases by enhancing the detection sensitivity and specificity. Ultimately, these advancements aim to improve patient outcomes by enabling earlier diagnosis, cost-effectiveness, and more precise monitoring, contributing to more effective management of cardiovascular health globally.
Collapse
Affiliation(s)
- Adil Khan
- School of Electronic Information, Central South University, Changsha 410083, China; School of Physics, Central South University, Changsha 410083, China
| | - Muhammad Anwar
- School of Electronic Information, Central South University, Changsha 410083, China; School of Physics, Central South University, Changsha 410083, China
| | - Atiq Ur Rehman
- School of Physics, Central South University, Changsha 410083, China
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea; Institute of Nanosensor Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Nuno M Reis
- Department of Chemical Engineering and Centre for Bioengineering & Biomedical Technologies (CBio), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kashif Ali Kalhoro
- School of Electronic Information, Central South University, Changsha 410083, China; School of Physics, Central South University, Changsha 410083, China; Sukkur IBA University, Sukkur 65200, Pakistan
| | - Chi Zhang
- School of Electronic Information, Central South University, Changsha 410083, China; School of Physics, Central South University, Changsha 410083, China
| | - Zhengchun Liu
- School of Electronic Information, Central South University, Changsha 410083, China; School of Physics, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Zhou KXT, Bujold KE. The Emergence of Oligonucleotide Building Blocks in the Multispecific Proximity-Inducing Drug Toolbox of Destruction. ACS Chem Biol 2025; 20:3-18. [PMID: 39704048 DOI: 10.1021/acschembio.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Oligonucleotides are a rapidly emerging class of therapeutics. Their most well-known examples are informational drugs that modify gene expression by binding mRNA. Despite inducing proximity between biological machinery and mRNA when applied to modulating gene expression, oligonucleotides are not typically labeled as "proximity-inducing" in literature. Yet, they have recently been explored as building blocks for multispecific proximity-inducing drugs (MPIDs). MPIDs are unique because they can direct endogenous biological machinery to destroy targeted molecules and cells, in contrast to traditional drugs that inhibit only their functions. The unique mechanism of action of MPIDs has enabled the targeting of previously "undruggable" molecular entities that cannot be effectively inhibited. However, the development of MPIDs must ensure that these molecules will selectively direct a potent, destruction-based mechanism of action toward intended targets over healthy tissues to avoid causing life-threatening toxicities. Oligonucleotides have emerged as promising building blocks for the design of MPIDs because they are sequence-controlled molecules that can be rationally designed to program multispecific binding interactions. In this Review, we examine the emergence of oligonucleotide-containing MPIDs in the proximity induction space, which has been dominated by antibody and small molecule MPID modalities. Moreover, examples of oligonucleotides developed as MPID candidates in immunotherapy and protein degradation are discussed to demonstrate the utility of oligonucleotides in expanding the scope and selectivity of the MPID toolbox. Finally, we discuss the utility of programming "AND" gates into oligonucleotide scaffolds to encode conditional responses that have the potential to be incorporated into MPIDs, which can further enhance their selectivity, thus increasing the scope of this drug category.
Collapse
Affiliation(s)
- Kevin Xiao Tong Zhou
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ONL8S 4M1, Canada
| | - Katherine E Bujold
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ONL8S 4M1, Canada
| |
Collapse
|
3
|
Alamudi SH, Lee YA. Design strategies for organelle-selective fluorescent probes: where to start? RSC Adv 2025; 15:2115-2131. [PMID: 39845114 PMCID: PMC11752733 DOI: 10.1039/d4ra08032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Monitoring physiological changes within cells is crucial for understanding their biological aspects and pathological activities. Fluorescent probes serve as powerful tools for this purpose, offering advantageous characteristics over genetically encoded probes. While numerous organelle-selective probes have been developed in the past decades, several challenges persist. This review explores the strategies and key factors contributing to the successful rationale design of these probes. We systematically discuss the typical mode of cellular uptake generally adopted by fluorescent probes and provide a detailed examination of the key factors to consider in design rationale from two perspectives: the properties of the target organelle and the physicochemical properties of the probe itself. Additionally, recent examples of organelle-targeted probes are presented, along with a discussion of the current challenges faced by fluorescent probes in the field.
Collapse
Affiliation(s)
- Samira Husen Alamudi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia Depok Indonesia 16424 +6221-7270027
| | - Yong-An Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technological, and Research (A*STAR) 60 Biopolis Street, Genome Singapore 138672
| |
Collapse
|
4
|
Cinar M, Martinez-Medina L, Puvvula P, Arakelyan A, Vardarajan B, Anthony N, Nagaraju G, Park D, Feng L, Sheff F, Mosunjac M, Saxe D, Flygare S, Alese O, Kaufman J, Lonial S, Sarmiento J, Lossos I, Vertino P, Lopez J, El-Rayes B, Bernal-Mizrachi L. Transposon DNA sequences facilitate the tissue-specific gene transfer of circulating tumor DNA between human cells. Nucleic Acids Res 2024; 52:7539-7555. [PMID: 38783375 PMCID: PMC11260451 DOI: 10.1093/nar/gkae427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
The exchange of genes between cells is known to play an important physiological and pathological role in many organisms. We show that circulating tumor DNA (ctDNA) facilitates cell-specific gene transfer between human cancer cells and explain part of the mechanisms behind this phenomenon. As ctDNA migrates into the nucleus, genetic information is transferred. Cell targeting and ctDNA integration require ERVL, SINE or LINE DNA sequences. Chemically manufactured AluSp and MER11C sequences replicated multiple myeloma (MM) ctDNA cell targeting and integration. Additionally, we found that ctDNA may alter the treatment response of MM and pancreatic cancer models. This study shows that retrotransposon DNA sequences promote cancer gene transfer. However, because cell-free DNA has been detected in physiological and other pathological conditions, our findings have a broader impact than just cancer. Furthermore, the discovery that transposon DNA sequences mediate tissue-specific targeting will open up a new avenue for the delivery of genes and therapies.
Collapse
Affiliation(s)
- Munevver Cinar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | | | - Arsen Arakelyan
- Bioinformatics group, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | | | - Neil Anthony
- Integrated Cellular Imaging Core, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ganji P Nagaraju
- Division of hematology and oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongkyoo Park
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Lei Feng
- Kodikaz Therapeutic Solutions, Inc, New York, NY, USA
| | - Faith Sheff
- Pathology and Laboratory Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Marina Mosunjac
- Pathology and Laboratory Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Debra Saxe
- Pathology and Laboratory Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Steven Flygare
- Department of Computational Biology/ Genetics, The University of Utah, Salt Lake City, UT, USA
| | - Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Jonathan L Kaufman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Juan M Sarmiento
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Izidore S Lossos
- Department of Medicine, Division of Hematology-Oncology and Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Paula M Vertino
- Department of Biomedical Genetics and the Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Jose A Lopez
- Bloodworks Northwest Research Institute, Division of Hematology, University of Washington School of Medicine, Seattle, WA, USA
| | - Bassel El-Rayes
- Division of hematology and oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Xiao CD, Zhong MQ, Gao Y, Yang ZL, Jia MH, Hu XH, Xu Y, Shen XC. A Unique G-Quadruplex Aptamer: A Novel Approach for Cancer Cell Recognition, Cell Membrane Visualization, and RSV Infection Detection. Int J Mol Sci 2023; 24:14344. [PMID: 37762645 PMCID: PMC10531985 DOI: 10.3390/ijms241814344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Surface staining has emerged as a rapid technique for applying external stains to trace cellular identities in diverse populations. In this study, we developed a distinctive aptamer with selective binding to cell surface nucleolin (NCL), bypassing cytoplasmic internalization. Conjugation of the aptamer with a FAM group facilitated NCL visualization on live cell surfaces with laser confocal microscopy. To validate the aptamer-NCL interaction, we employed various methods, including the surface plasmon resonance, IHC-based flow cytometry, and electrophoretic mobility shift assay. The G-quadruplex formations created by aptamers were confirmed with a nuclear magnetic resonance and an electrophoretic mobility shift assay utilizing BG4, a G-quadruplex-specific antibody. Furthermore, the aptamer exhibited discriminatory potential in distinguishing between cancerous and normal cells using flow cytometry. Notably, it functioned as a dynamic probe, allowing real-time monitoring of heightened NCL expression triggered by a respiratory syncytial virus (RSV) on normal cell surfaces. This effect was subsequently counteracted with dsRNA transfection and suppressed the NCL expression; thus, emphasizing the dynamic attributes of the probe. These collective findings highlight the robust versatility of our aptamer as a powerful tool for imaging cell surfaces, holding promising implications for cancer cell identification and the detection of RSV infections.
Collapse
Affiliation(s)
- Chao-Da Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ming-Qing Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yue Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
| | - Zheng-Lin Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
| | - Meng-Hao Jia
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
| | - Xiao-Hui Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
6
|
Kong AHY, Wu AJ, Ho OKY, Leung MMK, Huang AS, Yu Y, Zhang G, Lyu A, Li M, Cheung KH. Exploring the Potential of Aptamers in Targeting Neuroinflammation and Neurodegenerative Disorders: Opportunities and Challenges. Int J Mol Sci 2023; 24:11780. [PMID: 37511539 PMCID: PMC10380291 DOI: 10.3390/ijms241411780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroinflammation is the precursor for several neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Targeting neuroinflammation has emerged as a promising strategy to address a wide range of CNS pathologies. These NDDs still present significant challenges in terms of limited and ineffective diagnosis and treatment options, driving the need to explore innovative and novel therapeutic alternatives. Aptamers are single-stranded nucleic acids that offer the potential for addressing these challenges through diagnostic and therapeutic applications. In this review, we summarize diagnostic and therapeutic aptamers for inflammatory biomolecules, as well as the inflammatory cells in NDDs. We also discussed the potential of short nucleotides for Aptamer-Based Targeted Brain Delivery through their unique features and modifications, as well as their ability to penetrate the blood-brain barrier. Moreover, the unprecedented opportunities and substantial challenges of using aptamers as therapeutic agents, such as drug efficacy, safety considerations, and pharmacokinetics, are also discussed. Taken together, this review assesses the potential of aptamers as a pioneering approach for target delivery to the CNS and the treatment of neuroinflammation and NDDs.
Collapse
Affiliation(s)
- Anna Hau-Yee Kong
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aston Jiaxi Wu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Olivia Ka-Yi Ho
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Maggie Ming-Ki Leung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Alexis Shiying Huang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Min Li
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - King-Ho Cheung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
7
|
Liu Y, Qian X, Ran C, Li L, Fu T, Su D, Xie S, Tan W. Aptamer-Based Targeted Protein Degradation. ACS NANO 2023; 17:6150-6164. [PMID: 36942868 DOI: 10.1021/acsnano.2c10379] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The selective removal of misfolded, aggregated, or aberrantly overexpressed protein plays an essential role in maintaining protein-dominated biological processes. In parallel, the precise knockout of abnormal proteins is inseparable from the accurate identification of proteins within complex environments. Guided by these precepts, small molecules, or antibodies, are commonly used as protein recognition tools for developing targeted protein degradation (TPD) technology. Indeed, TPD has shown tremendous prospects in chronic diseases, rare diseases, cancer research, and other fields. Meanwhile, aptamers are short RNA or DNA oligonucleotides that can bind to target proteins with high specificity and strong affinity. Accordingly, aptamers are actively used in designing and constructing TPD technology. In this perspective, we provide a brief introduction to TPD technology in its current progress, and we summarize its application challenges. Recent advances in aptamer-based TPD technology are reviewed, together with corresponding challenges and outlooks.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xu Qian
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chunyan Ran
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Longjie Li
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ting Fu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sitao Xie
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Shishparenok AN, Furman VV, Zhdanov DD. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers (Basel) 2023; 15:2151. [PMID: 37046816 PMCID: PMC10093432 DOI: 10.3390/cancers15072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vitalina V. Furman
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt 49A, 197101 St. Petersburg, Russia
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
9
|
Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, Md Yasin IS, Wasoh H. Advances in Aptamer-Based Biosensors and Cell-Internalizing SELEX Technology for Diagnostic and Therapeutic Application. BIOSENSORS 2022; 12:bios12110922. [PMID: 36354431 PMCID: PMC9687594 DOI: 10.3390/bios12110922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 05/28/2023]
Abstract
Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.
Collapse
Affiliation(s)
- Zixuen Gan
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | | | - Mohd Yunus Abd Shukor
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Murni Halim
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Nur Adeela Yasid
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Jaafar Abdullah
- Faculty of Science, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Ina Salwany Md Yasin
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Helmi Wasoh
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| |
Collapse
|
10
|
Chan KY, Kinghorn AB, Hollenstein M, Tanner JA. Chemical modifications for a next generation of nucleic acid aptamers. Chembiochem 2022; 23:e202200006. [PMID: 35416400 DOI: 10.1002/cbic.202200006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/11/2022] [Indexed: 11/08/2022]
Abstract
In the past three decades, in vitro systematic evolution of ligands by exponential enrichment (SELEX) has yielded many aptamers for translational applications in both research and clinical settings. Despite their promise as an alternative to antibodies, the low success rate of SELEX (~ 30%) has been a major bottleneck that hampers the further development of aptamers. One hurdle is the lack of chemical diversity in nucleic acids. To address this, the aptamer chemical repertoire has been extended by introducing exotic chemical groups, which provide novel binding functionalities. This review will focus on how modified aptamers can be selected and evolved, with illustration of some successful examples. In particular, unique chemistries are exemplified. Various strategies of incorporating modified building blocks into the standard SELEX protocol are highlighted, with a comparison of the differences between pre-SELEX and post-SELEX modifications. Nucleic acid aptamers with extended functionality evolved from non-natural chemistries will open up new vistas for function and application of nucleic acids.
Collapse
Affiliation(s)
- Kwing Yeung Chan
- The University of Hong Kong, School of Biomedical Sciences, HONG KONG
| | | | | | - Julian Alexander Tanner
- The University of Hong Kong, School of Biomedical Sciences, 3/F Laboratory Block, 21 Sassoon Road, 000000, Pokfulam, HONG KONG
| |
Collapse
|