1
|
Schnitzer T, van den Bersselaar BWL, Lamers BAG, van Son MHC, Maessen SJD, de Graaf FV, de Waal BFM, Trapp N, Vantomme G, Meijer EW. Crystal Lattice Analysis for 2D Nanomorphology Prediction of Phase-Separated Materials. J Am Chem Soc 2025; 147:1991-1999. [PMID: 39757471 PMCID: PMC11744751 DOI: 10.1021/jacs.4c14964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025]
Abstract
Spontaneous phase separation of materials is a powerful strategy to generate highly defined 2D nanomorphologies with novel properties and functions. Exemplary are such morphologies in block copolymers or amphiphilic systems, whose formation can be well predicted based on parameters such as volume fraction and shape factor. In contrast, the formation of 2D nanomorphologies is currently unpredictable in materials perfectly defined at the molecular level, in which crystallinity plays a significant role. Here, we introduce a crystal lattice analysis to predict a priori the formation of 2D nanomorphologies from the crystalline units in phase-separated soft materials. We show that the formation of lamellar morphologies, their domain spacings, and thermal transition temperatures of such materials can be predicted using a straightforward crystal lattice analysis workflow. We envision this approach to facilitate the design and discovery of new materials with 2D nanomorphologies that are essential for next-generation electronic applications.
Collapse
Affiliation(s)
- Tobias Schnitzer
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600MB Eindhoven, The Netherlands
- Institute
of Organic Chemistry, Albert-Ludwigs University
Freiburg, Albertstraße
21, 79110 Freiburg
im Breisgau, Germany
| | | | - Brigitte A. G. Lamers
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600MB Eindhoven, The Netherlands
| | - Martin H. C. van Son
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600MB Eindhoven, The Netherlands
| | - Stefan J. D. Maessen
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600MB Eindhoven, The Netherlands
| | - Freek V. de Graaf
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600MB Eindhoven, The Netherlands
| | - Bas F. M. de Waal
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600MB Eindhoven, The Netherlands
| | - Nils Trapp
- Small
Molecule Crystallography Center, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Ghislaine Vantomme
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
2
|
Gou X, Zhao HY, Huang Z, Yang Y, Jin LY. Donor-Acceptor Assembly of Amphiphilic Molecules Based on 9,10-Distyrylanthracene Derivatives with Terminal Naphthalene Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7106-7113. [PMID: 38498422 DOI: 10.1021/acs.langmuir.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Amphiphilic rod-coil compounds have excellent photophysical properties and can be assembled into supramolecular nanostructures of different sizes in water or polar solvents. Herein, we synthesized the amphiphilic compounds 2N-DSA, 4N-DSA, and 6N-DSA with 9,10-distyrylanthracene (DSA) as the core and a naphthalene unit as the terminal group that connected DSA through a tetraethylene glycol chain. These compounds have excellent aggregation-induced emission (AIE) properties in aqueous solution and are assembled into worm-like fragments or different sizes of spherical assemblies, defending the volume ratio of the rod to coil segments. Notably, the donor-acceptor interaction between DSA and electron- deficient compounds 2,4,6-trinitrophenol (TNP), 2,4,5,7-tetranitrofluorenone (TNF), and tetraethylene glycol dinitrobenzoate (TGDNB) forms a charge transfer complex, which can be used as a nanoreactor to improve the yield of the Suzuki coupling reaction about 8-10 times. The experimental results reveal that the synergy effect of the donor-acceptor, intermolecular π-π stacking, and hydrophobic-hydrophilic interactions significantly influences the morphology of aggregates and the efficiency of the nanoreactor.
Collapse
Affiliation(s)
- Xiaoliang Gou
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhegang Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuntian Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Corbet CHWA, van den Bersselaar BWL, de Waal BFM, Reynaerts R, Mali KS, De Feyter S, Jonas AM, Meijer EW, Vantomme G. Self-Assembly of Discrete Oligomers of Naphthalenediimides in Bulk and on Surfaces. Chemistry 2024; 30:e202303107. [PMID: 38009432 DOI: 10.1002/chem.202303107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Here, we report on the synthesis of discrete oligomers of alkyl-bridged naphthalenediimides (NDIs) and study their molecular nanostructures both in bulk, in solution, and at the liquid-solid interface. Via an iterative synthesis method, multiple NDI cores were bridged with short and saturated alkyl-diamines (C3 and C12 ) or long and unsaturated alkyl-diamines (u2 C33 to u8 C100 ) at their imide termini. The strong intermolecular interaction between the NDI cores was observed by probing their photophysical properties in solution. In bulk, the discrete NDI oligomers preferentially ordered in lamellar morphologies, irrespective of whether a saturated or unsaturated spacer was employed. Moreover, both the molecular architecture as well as the crystallization conditions play a significant role in the nanoscale ordering. The long unsaturated alkyl chains lead preferably to folded-chain conformations while their saturated analogues form stretched arrangements. At the solution-solid interface, well-defined lamellar regions were observed. These results show that precision in chemical structure alone is not sufficient to reach well-defined structures of discrete oligomers, but that it must be combined with precision in processing conditions.
Collapse
Affiliation(s)
- Christiaan H W A Corbet
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bart W L van den Bersselaar
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bas F M de Waal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Robby Reynaerts
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, B-3001, Leuven, Belgium
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, B-3001, Leuven, Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, B-3001, Leuven, Belgium
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain-UCLouvain, Ottignies-Louvain-la-Neuve, Louvain-la-Neuve, B-1348, Belgium
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- School of Chemistry and RNA Institute, University of New South Wales, Sydney, Australia
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Gou X, Lu J, Zhao HY, Pei YR, Jin LY. Supramolecular nanostructures of coil-rod-coil molecules containing a 9,10-distyrylanthracene group in aqueous solution and their optical properties of assemblies. SOFT MATTER 2023; 19:6683-6690. [PMID: 37609871 DOI: 10.1039/d3sm00924f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A series of coil-rod-coil molecules containing a 9,10-distyrylanthracene (DSA) core was successfully synthesized. The flexible parts of these molecules are composed of different polyethylene oxide chains. These molecules with aggregation-induced luminescence properties can be assembled into micelles, spheres, and sheet-like nano-assemblies in aqueous solution and have a strong ability to form charge-transfer complexes with the electron-deficient small molecules 2,4,5,7-tetranitro-9-fluorenone and 2,4,6-trinitrophenol. Interestingly, under ultraviolet light irradiation, the DSA structure undergoes photolysis and induces the disappearance of the aggregation-induced luminescence phenomena, giving these molecules application potential as a photodegradable material. In addition, these molecules are suitable organic dyes for information encryption and anti-counterfeiting applications.
Collapse
Affiliation(s)
- Xiaoliang Gou
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Jie Lu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
5
|
van Son MHC, Berghuis AM, de Waal BFM, Wenzel FA, Kreger K, Schmidt HW, Rivas JG, Vantomme G, Meijer EW. Highly Ordered Supramolecular Materials of Phase-Separated Block Molecules for Long-Range Exciton Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300891. [PMID: 37002556 DOI: 10.1002/adma.202300891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Efficient energy transport over long distances is essential for optoelectronic and light-harvesting devices. Although self-assembled nanofibers of organic molecules are shown to exhibit long exciton diffusion lengths, alignment of these nanofibers into films with large, organized domains with similar properties remains a challenge. Here, it is shown how the functionalization of C3 -symmetric carbonyl-bridged triarylamine trisamide (CBT) with oligodimethylsiloxane (oDMS) side chains of discrete length leads to fully covered surfaces with aligned domains up to 125 × 70 µm2 in which long-range exciton transport takes place. The nanoscale morphology within the domains consists of highly ordered nanofibers with discrete intercolumnar spacings within a soft amorphous oDMS matrix. The oDMS prevents bundling of the CBT fibers, reducing the number of defects within the CBT columns. As a result, the columns have a high degree of coherence, leading to exciton diffusion lengths of a few hundred nanometers with exciton diffusivities (≈0.05 cm2 s-1 ) that are comparable to those of a crystalline tetracene. These findings represent the next step toward fully covered surfaces of highly aligned nanofibers through functionalization with oDMS.
Collapse
Affiliation(s)
- Martin H C van Son
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Anton M Berghuis
- Department of Applied Physics and Institute for Photonic Integration, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Bas F M de Waal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Felix A Wenzel
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95447, Bayreuth, Germany
| | - Klaus Kreger
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95447, Bayreuth, Germany
| | - Hans-Werner Schmidt
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95447, Bayreuth, Germany
| | - Jaime Gómez Rivas
- Department of Applied Physics and Institute for Photonic Integration, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
6
|
Yang X, Bai R, Zhang Z, Liu Y, Yan X. Mechanically tunable supramolecular polymer networks with different triblock backbones. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Yangang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai People's Republic of China
| |
Collapse
|
7
|
Seo G, Kim T, Shen B, Kim J, Kim Y. Transformation of Supramolecular Membranes to Vesicles Driven by Spontaneous Gradual Deprotonation on Membrane Surfaces. J Am Chem Soc 2022; 144:17341-17345. [PMID: 36099520 DOI: 10.1021/jacs.2c06941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The various proteins and asymmetric lipid bilayers present in cell membranes form curvatures, resulting in structural transformations to generate vesicles. Fission and fusion processes between vesicles and cell membranes are reversible in living organisms. Although the transformation of a two-dimensional membrane to a three-dimensional vesicle structure is a common natural phenomenon, the lack of a detailed understanding at the molecular level limits the development of synthetic systems for functional materials. Herein, we report a supramolecular membrane system through donor-acceptor interactions using a π-deficient acceptor and π-rich donor as building blocks. The reduced electrostatic repulsion between ammonium cations and the spontaneously deprotonated neutral amino group induced anisotropic membrane curvature, resulting in membrane fission to form vesicles with a detailed understanding at the molecular level. Furthermore, the reversible transformation of vesicles to membranes upon changing the pH provides a novel synthetic system exhibiting both fission and fusion processes.
Collapse
Affiliation(s)
- Gunhee Seo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Bowen Shen
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Jehan Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.,Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
8
|
Amemori S, Hamamoto R, Mizuno M. Enhancement of association constants of various charge-transfer complexes in siloxane solvents. NEW J CHEM 2022. [DOI: 10.1039/d2nj00214k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The association constants of various charge-transfer complexes were evaluated in n-hexane, octamethyltrisiloxane and PDMS to investigate the solvent effect.
Collapse
Affiliation(s)
- Shogo Amemori
- NanoMaterials Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ryosuke Hamamoto
- School of Chemistry, College of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Motohiro Mizuno
- NanoMaterials Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
9
|
Ni XW, Chen K, Qiao SL. Photocontrollable thermosensitive chemical spatiotemporally destabilizes mitochondrial membranes for cell fate manipulation. Biomater Sci 2022; 10:2550-2556. [DOI: 10.1039/d2bm00212d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perturbations in mitochondrial membrane stability lead to cytochrome c release and induce caspase-dependent apoptosis. Using synthetic smart chemicals that with changeable physicochemical properties to interfere the mitochondrial membrane stability has...
Collapse
|