1
|
Du Y, Wang P, Fang Y, Zhu M. Asymmetric Charge Distribution in Atomically Precise Metal Nanoclusters for Boosted CO 2 Reduction Catalysis. CHEMSUSCHEM 2025; 18:e202402085. [PMID: 39472281 DOI: 10.1002/cssc.202402085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Recently, atomically precise metal nanoclusters (NCs) have been widely applied in CO2 reduction reaction (CO2RR), achieving exciting activity and selectivity and revealing structure-performance correlation. However, at present, the efficiency of CO2RR is still unsatisfactory and cannot meet the requirements of practical applications. One of the main reasons is the difficulty in CO2 activation due to the chemical inertness of CO2. Constructing symmetry-breaking active sites is regarded as an effective strategy to promote CO2 activation by modulating electronic and geometric structure of CO2 molecule. In addition, in the subsequent CO2RR process, asymmetric charge distributed sites can break the charge balance in adjacent adsorbed C1 intermediates and suppress electrostatic repulsion between dipoles, benefiting for C-C coupling to generate C2+ products. Although compared to single atoms, metal nanoparticles, and inorganic materials the research on the construction of asymmetric catalytic sites in metal NCs is in a newly-developing stage, the precision, adjustability and diversity of metal NCs structure provide many possibilities to build asymmetric sites. This review summarizes several strategies of construction asymmetric charge distribution in metal NCs for boosting CO2RR, concludes the mechanism investigation paradigm of NCs-based catalysts, and proposes the challenges and opportunities of NCs catalysis.
Collapse
Affiliation(s)
- Yuanxin Du
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Pei Wang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yi Fang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Manzhou Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| |
Collapse
|
2
|
Takemae K, Tomihari S, Naito T, Takagi M, Shimazaki T, Kawawaki T, Tachikawa M, Negishi Y. Inclusion of gold ions in tiara-like nickel hexanuclear nanoclusters. NANOSCALE 2025; 17:3721-3727. [PMID: 39829273 DOI: 10.1039/d4nr04579c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Tiara-like metal nanoclusters (TNCs) composed of group 10 transition metals and thiolates can easily change their number of polymerization and include various molecules or metal ions as guests within their ring structures. Therefore, they are expected to be applied in sensing, storage, and catalyst materials based on their selective inclusion characteristics. However, there are very few reports regarding the principles of selective inclusion for guest molecules/ions in TNCs. In this study, we focused on the nickel (Ni) hexanuclear TNC, Ni6(PET)12 (PET = 2-phenylethanethiolate), to clarify the kinds of metal ions that can be included in TNCs. As a result, we found that the gold (Au) ion can be selectively included in Ni6(PET)12 among various metal ions to form a stable structure. From various experiments and density functional theory calculations, we concluded that the main reasons for this are that [Ni6(PET)12]0 has (1) a pore large enough to include Au ions and (2) Ni and Au favour the formation of bonding orbitals based on charge transfer interactions. These insights are expected to lead to a better understanding of host-guest interactions in TNCs and provide clear design guidelines for forming various inclusion structures in the future.
Collapse
Affiliation(s)
- Kana Takemae
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Shiho Tomihari
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Takumi Naito
- Quantum Chemistry Division, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| | - Makito Takagi
- Quantum Chemistry Division, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| | - Tomomi Shimazaki
- Quantum Chemistry Division, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Masanori Tachikawa
- Quantum Chemistry Division, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| | - Yuichi Negishi
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
3
|
Sakai H, Hiramatsu S, Akiyama A, Negishi Y, Hasobe T. Sensitization experiments of ultrasmall gold nanoclusters: determination of triplet quantum yields and molar absorption coefficients. Chem Commun (Camb) 2025; 61:913-916. [PMID: 39668796 DOI: 10.1039/d4cc06083k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
We demonstrated for the first time the determination of triplet quantum yields and molar absorption coefficients of ultrasmall gold nanoclusters specifically [Au25(PET)18]- with phenylethanethiolate (PET) ligands using two sensitization experiments.
Collapse
Affiliation(s)
- Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| | - Sunao Hiramatsu
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| | - Aoi Akiyama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| |
Collapse
|
4
|
Sakamoto K, Masuda S, Takano S, Tsukuda T. Carbon-supported Au 25 cluster catalysts partially decorated with dendron thiolates: enhanced loading weight and durability for hydrogen evolution reaction. NANOSCALE 2024; 16:20608-20616. [PMID: 39440912 DOI: 10.1039/d4nr03385j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In order to establish a design principle for efficient Au electrocatalysis, it is desirable to synthesize a highly loaded, robust, and atomically precise Au cluster catalyst on a conductive carbon support. In this work, heterogeneous Au25 catalysts were prepared by calcining 5.0 wt% of mixed ligated [Au25(D2S)x(PET)18-x]0 (D2S = second generation Fréchet-type dendron thiolate, PET = 2-phenylethanethiolate) on a carbon support. X-ray absorption fine structure analysis, powder X-ray diffraction, and aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) revealed the successful synthesis of carbon-supported partially thiolated Au25 clusters by calcining [Au25(D2S)10.7(PET)7.3]0 at 425 °C for ≥12 h, whereas calcination of [Au25(PET)18]0 under the same conditions resulted in thermally induced aggregation into larger Au nanoparticles. The D2S-modified Au25 catalyst showed better durability than PET-modified Au25 in electrocatalytic hydrogen evolution reaction. The higher durability was attributed to the suppression of aggregation of Au25 clusters during the reaction, as confirmed by AC-HAADF-STEM. These results indicate that the residual D2S ligands on Au25 enhance the stability against aggregation more than the residual PET due to stronger non-covalent interactions with carbon supports and/or greater steric hindrance of dendritic structure. This work demonstrates that the stability of Au catalysts can be improved by partial decoration with designed ligands.
Collapse
Affiliation(s)
- Kosuke Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
5
|
Singh S, Wi D, Salem KE, Higgins D, Scott RWJ. Chemical activation of atom-precise Pd 3 nanoclusters on γ-Al 2O 3 supports for transfer hydrogenation reactions. NANOSCALE 2024; 16:19763-19774. [PMID: 39365165 DOI: 10.1039/d4nr03364g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Deposition of atom-precise nanoclusters onto solid supports is a promising route to synthesize model heterogeneous catalysts. However, to enhance nanocluster-support interactions, activation of the nanoclusters by removal of surface ligands is necessary. Thermal treatment to remove surface ligands from supported metal nanoclusters can yield highly active heterogeneous catalysts, however, the high temperatures employed can lead to poor control over the final size and speciation of the nanoclusters. As an alternative to high-temperature thermal treatments, chemical activation of [Pd3(μ-Cl)(μ-PPh2)2(PPh3)3]+ (Pd3) nanoclusters on γ-Al2O3 supports under mild reaction conditions has been demonstrated in this work. Hydride-based reducing agents such as NaBH4, LiBH4, and LiAlH4 have been examined for the activation of the Pd3 nanoclusters. The structural evolution and speciation of the nanoclusters after activation have been monitored using a combination of XAS, XPS, STEM-EDX mapping, and solid-state NMR techniques. The results indicate that treatment with borohydride reducing agents successfully removed surface phosphine and chloride ligands, and the extent of size growth of the nanoclusters during activation is directly correlated with the amount of borohydride used. Borate side products remain on the γ-Al2O3 surface after activation; moreover, exposure to high amounts of NaBH4 resulted in the incorporation of B atoms inside the lattice of the activated Pd nanoclusters. LiAlH4 treatment, on the other hand, led to no significant size growth of the nanoclusters and resulted in a mixture of Pd single-atom sites and activated nanoclusters on the γ-Al2O3 surface. Finally, the catalytic potential of the activated nanoclusters has been tested in the transfer hydrogenation of trans-cinnamaldehyde, using sodium formate/formic acid as the hydrogen donor. The catalytic results showed that smaller Pd nanoclusters are much more selective for hydrogenating trans-cinnamaldehyde to hydrocinnamaldehyde, but overall have lower activity compared to larger Pd nanoparticles. Overall, this study showcases chemical activation routes as an alternative to traditional thermal activation routes for activating supported nanoclusters by offering improved speciation and size control.
Collapse
Affiliation(s)
- Siddhant Singh
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.
| | - Dami Wi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.
| | - Kholoud E Salem
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4L7, Canada
| | - Drew Higgins
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4L7, Canada
| | - Robert W J Scott
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.
| |
Collapse
|
6
|
Hirayama D, Kawawaki T, Oguchi S, Ogano M, Kon N, Yasuda T, Higami A, Negishi Y. Ultrafine Rhodium-Chromium Mixed-Oxide Cocatalyst with Facet-Selective Loading for Excellent Photocatalytic Water Splitting. J Am Chem Soc 2024; 146:26808-26818. [PMID: 39311751 PMCID: PMC11613323 DOI: 10.1021/jacs.4c07351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
The development of water-splitting photocatalysts capable of generating green hydrogen (H2) from water and sunlight is crucial for achieving carbon neutrality. Further enhancement of the photocatalytic water-splitting activity is essential to realizing this objective. Photocatalysts with specific exposed crystal facets can facilitate efficient charge separation of electrons/holes, thereby achieving high activity for water splitting. However, there have been no reports of ultrafine (∼1 nm) cocatalysts being loaded onto specific crystal facets of photocatalysts, despite cocatalysts being the actual reaction sites for water splitting. This study establishes a novel method for achieving facet-selective loading of ultrafine H2-evolution cocatalysts onto the {100} facets, which are the H2-evolution facets, of a strontium titanate photocatalyst. The resulting photocatalyst exhibits the highest apparent quantum yield achieved to date for strontium titanate. This research holds the potential to further improve various types of advanced photocatalysts and is expected to accelerate the transition to carbon neutrality.
Collapse
Affiliation(s)
- Daisuke Hirayama
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Carbon
Value Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sota Oguchi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Mai Ogano
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Naochika Kon
- Innovation
Center, Mitsubishi Materials Corporation, 1002-14, Mukohyama, Naka-shi, Ibaraki 311-0102, Japan
| | - Tomohiro Yasuda
- Innovation
Center, Mitsubishi Materials Corporation, 1002-14, Mukohyama, Naka-shi, Ibaraki 311-0102, Japan
| | - Akihiro Higami
- Innovation
Center, Mitsubishi Materials Corporation, 1002-14, Mukohyama, Naka-shi, Ibaraki 311-0102, Japan
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Carbon
Value Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
7
|
Ariga K, Song J, Kawakami K. Molecular machines working at interfaces: physics, chemistry, evolution and nanoarchitectonics. Phys Chem Chem Phys 2024; 26:13532-13560. [PMID: 38654597 DOI: 10.1039/d4cp00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
As a post-nanotechnology concept, nanoarchitectonics combines nanotechnology with advanced materials science. Molecular machines made by assembling molecular units and their organizational bodies are also products of nanoarchitectonics. They can be regarded as the smallest functional materials. Originally, studies on molecular machines analyzed the average properties of objects dispersed in solution by spectroscopic methods. Researchers' playgrounds partially shifted to solid interfaces, because high-resolution observation of molecular machines is usually done on solid interfaces under high vacuum and cryogenic conditions. Additionally, to ensure the practical applicability of molecular machines, operation under ambient conditions is necessary. The latter conditions are met in dynamic interfacial environments such as the surface of water at room temperature. According to these backgrounds, this review summarizes the trends of molecular machines that continue to evolve under the concept of nanoarchitectonics in interfacial environments. Some recent examples of molecular machines in solution are briefly introduced first, which is followed by an overview of studies of molecular machines and similar supramolecular structures in various interfacial environments. The interfacial environments are classified into (i) solid interfaces, (ii) liquid interfaces, and (iii) various material and biological interfaces. Molecular machines are expanding their activities from the static environment of a solid interface to the more dynamic environment of a liquid interface. Molecular machines change their field of activity while maintaining their basic functions and induce the accumulation of individual molecular machines into macroscopic physical properties molecular machines through macroscopic mechanical motions can be employed to control molecular machines. Moreover, research on molecular machines is not limited to solid and liquid interfaces; interfaces with living organisms are also crucial.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
8
|
Fukumoto Y, Omoda T, Hirai H, Takano S, Harano K, Tsukuda T. Diphosphine-Protected IrAu 12 Superatom with Open Site(s): Synthesis and Programmed Stepwise Assembly. Angew Chem Int Ed Engl 2024; 63:e202402025. [PMID: 38334176 DOI: 10.1002/anie.202402025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
One or two phenylacetylide (PA) ligand(s) were successfully removed from the IrAu12 superatomic core of [IrAu12(dppe)5(PA)2]+ (dppe=1,2-bis(diphenylphosphino)ethane) by reaction with controlled amounts of tetrafluoroboric acid. Optical and nuclear magnetic resonance spectroscopies and density functional theory calculations revealed the formation of open Au site(s) on the IrAu12 core of [IrAu12(dppe)5(PA)1]2+ and [IrAu12(dppe)5]3+ with the remaining structure intact. Isocyanide was efficiently trapped at the open electrophilic site on [IrAu12(dppe)5(PA)1]2+, whereas a dimer or trimer of the IrAu12 superatoms was formed using diisocyanide as a linker. These results open the door to designed assembly of chemically modified metal superatoms.
Collapse
Affiliation(s)
- Yuto Fukumoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tsubasa Omoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Present address: Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Haru Hirai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koji Harano
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
9
|
Masuda S, Sakamoto K, Tsukuda T. Atomically precise Au and Ag nanoclusters doped with a single atom as model alloy catalysts. NANOSCALE 2024; 16:4514-4528. [PMID: 38294320 DOI: 10.1039/d3nr05857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gold and silver nanoclusters (NCs) composed of <200 atoms are novel catalysts because their catalytic properties differ significantly from those of the corresponding bulk surface and can be dramatically tuned by the size (number of atoms). Doping with other metals is a promising approach for improving the catalytic performance of Au and Ag NCs. However, elucidation of the origin of the doping effects and optimization of the catalytic performance are hampered by the technical challenge of controlling the number and location of the dopants. In this regard, atomically precise Au or Ag (Au/Ag) NCs protected by ligands or polymers have recently emerged as an ideal platform because they allow regioselective substitution of single Au/Ag constituent atoms while retaining the size and morphology of the NC. Heterogeneous Au/Ag NC catalysts doped with a single atom can also be prepared by controlled calcination of ligand-protected NCs on solid supports. Comparison of thermal catalysis, electrocatalysis, and photocatalysis between the single-atom-doped and undoped Au/Ag NCs has revealed that the single-atom doping effect can be attributed to an electronic or geometric origin, depending on the dopant element and position. This minireview summarizes the recent progress of the synthesis and catalytic application of single-atom-doped, atomically precise Au/Ag NC catalysts and provides future prospects for the rational development of active and selective metal NC catalysts.
Collapse
Affiliation(s)
- Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kosuke Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
10
|
Wang Y, Sang X, Wu F, Pang Y, Xu G, Yuan Y, Hsu HY, Niu W. Boosting plasmon-enhanced electrochemistry by in situ surface cleaning of plasmonic nanocatalysts. NANOSCALE 2023; 15:18901-18909. [PMID: 37975296 DOI: 10.1039/d3nr04606k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The application of surface plasmons in heterogeneous catalysis has attracted widespread attention due to their promising potential for harvesting solar energy. The effect of surface adsorbates on catalysts has been well documented in many traditional reactions; nonetheless, their role in plasmonic catalysis has been rarely studied. In this study, an in situ electrochemical surface cleaning strategy is developed and the influence of surface adsorbates on plasmon-enhanced electrochemistry is investigated. Taking Au nanocubes as an example, plasmonic catalysts with clean surfaces are obtained by Cu2O coating and in situ electrochemical etching. During this process, the surface adsorbates of Au nanocubes are removed together with the Cu2O shells. The Au nanocubes with clean surfaces exhibit remarkable performance in plasmon-enhanced electrooxidation of glucose and an enhancement of 445% is demonstrated. The Au NCs with clean surfaces can not only provide more active sites but also avoid halides as hole scavengers, and therefore, the efficient utilization of hot holes by plasmonic excitation is achieved. This process is also generalized to other molecules and applied in electrochemical sensing with high sensitivity. These results highlight the critical role of surface adsorbates in plasmonic catalysis and may forward the design of efficient plasmonic catalysts for plasmon-enhanced electrochemistry.
Collapse
Affiliation(s)
- Yu Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Xueqing Sang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Yuanhao Pang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| |
Collapse
|
11
|
Kawawaki T, Negishi Y. Elucidation of the electronic structures of thiolate-protected gold nanoclusters by electrochemical measurements. Dalton Trans 2023; 52:15152-15167. [PMID: 37712891 DOI: 10.1039/d3dt02005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Metal nanoclusters (NCs) with sizes of approximately 2 nm or less have different physical/chemical properties from those of the bulk metals owing to quantum size effects. Metal NCs, which can be size-controlled and heterometal doped at atomic accuracy, are expected to be the next generation of important materials, and new metal NCs are reported regularly. However, compared with conventional materials such as metal complexes and relatively large metal nanoparticles (>2 nm), these metal NCs are still underdeveloped in terms of evaluation and establishment of application methods. Electrochemical measurements are one of the most widely used methods for synthesis, application, and characterisation of metal NCs. This review summarizes the basic knowledge of the electrochemistry and experimental techniques, and provides examples of the reported electronic states of thiolate-protected gold NCs elucidated by electrochemical approaches. It is expected that this review will provide useful information for researchers starting to study metal NCs.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
12
|
Yazaki D, Kawawaki T, Hirayama D, Kawachi M, Kato K, Oguchi S, Yamaguchi Y, Kikkawa S, Ueki Y, Hossain S, Osborn DJ, Ozaki F, Tanaka S, Yoshinobu J, Metha GF, Yamazoe S, Kudo A, Yamakata A, Negishi Y. Carbon Nitride Loaded with an Ultrafine, Monodisperse, Metallic Platinum-Cluster Cocatalyst for the Photocatalytic Hydrogen-Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208287. [PMID: 37093189 DOI: 10.1002/smll.202208287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
For the realization of a next-generation energy society, further improvement in the activity of water-splitting photocatalysts is essential. Platinum (Pt) is predicted to be the most effective cocatalyst for hydrogen evolution from water. However, when the number of active sites is increased by decreasing the particle size, the Pt cocatalyst is easily oxidized and thereby loses its activity. In this study, a method to load ultrafine, monodisperse, metallic Pt nanoclusters (NCs) on graphitic carbon nitride is developed, which is a promising visible-light-driven photocatalyst. In this photocatalyst, a part of the surface of the Pt NCs is protected by sulfur atoms, preventing oxidation. Consequently, the hydrogen-evolution activity per loading weight of Pt cocatalyst is significantly improved, 53 times, compared with that of a Pt-cocatalyst loaded photocatalyst by the conventional method. The developed method is also effective to enhance the overall water-splitting activity of other advanced photocatalysts such as SrTiO3 and BaLa4 Ti4 O15 .
Collapse
Affiliation(s)
- Daichi Yazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Daisuke Hirayama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Masanobu Kawachi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kosaku Kato
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Sota Oguchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Yamaguchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Yoshiya Ueki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - D J Osborn
- Department of Chemistry, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Fumihiko Ozaki
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Shunsuke Tanaka
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Jun Yoshinobu
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Gregory F Metha
- Department of Chemistry, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Akihiko Kudo
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Akira Yamakata
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
13
|
Li Y, Zhao S, Zang S. Programmable kernel structures of atomically precise metal nanoclusters for tailoring catalytic properties. EXPLORATION (BEIJING, CHINA) 2023; 3:20220005. [PMID: 37933377 PMCID: PMC10624382 DOI: 10.1002/exp.20220005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/01/2022] [Indexed: 11/08/2023]
Abstract
The unclear structures and polydispersity of metal nanoparticles (NPs) seriously hamper the identification of the active sites and the construction of structure-reactivity relationships. Fortunately, ligand-protected metal nanoclusters (NCs) with atomically precise structures and monodispersity have become an ideal candidate for understanding the well-defined correlations between structure and catalytic property at an atomic level. The programmable kernel structures of atomically precise metal NCs provide a fantastic chance to modulate their size, shape, atomic arrangement, and electron state by the precise modulating of the number, type, and location of metal atoms. Thus, the special focus of this review highlights the most recent process in tailoring the catalytic activity and selectivity over metal NCs by precisely controlling their kernel structures. This review is expected to shed light on the in-depth understanding of metal NCs' kernel structures and reactivity relationships.
Collapse
Affiliation(s)
- Ya‐Hui Li
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shu‐Na Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shuang‐Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| |
Collapse
|
14
|
Horita Y, Ishimi M, Negishi Y. Anion-templated silver nanoclusters: precise synthesis and geometric structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2203832. [PMID: 37251258 PMCID: PMC10215029 DOI: 10.1080/14686996.2023.2203832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023]
Abstract
Metal nanoclusters (NCs) are gaining much attention in nanoscale materials research because they exhibit size-specific physicochemical properties that are not observed in the corresponding bulk metals. Among them, silver (Ag) NCs can be precisely synthesized not only as pure Ag NCs but also as anion-templated Ag NCs. For anion-templated Ag NCs, we can expect the following capabilities: 1) size and shape control by regulating the central anion (anion template); 2) stabilization by adjusting the charge interaction between the central anion and surrounding Ag atoms; and 3) functionalization by selecting the type of central anion. In this review, we summarize the synthesis methods and influences of the central anion on the geometric structure of anion-templated Ag NCs, which include halide ions, chalcogenide ions, oxoanions, polyoxometalate, or hydride/deuteride as the central anion. This summary provides a reference for the current state of anion-templated Ag NCs, which may promote the development of anion-templated Ag NCs with novel geometric structures and physicochemical properties.
Collapse
Affiliation(s)
- Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Mai Ishimi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Japan
| |
Collapse
|
15
|
Kawawaki T, Mitomi Y, Nishi N, Kurosaki R, Oiwa K, Tanaka T, Hirase H, Miyajima S, Niihori Y, Osborn DJ, Koitaya T, Metha GF, Yokoyama T, Iida K, Negishi Y. Pt 17 nanocluster electrocatalysts: preparation and origin of high oxygen reduction reaction activity. NANOSCALE 2023; 15:7272-7279. [PMID: 36987742 DOI: 10.1039/d3nr01152f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We recently found that [Pt17(CO)12(PPh3)8]z (Pt = platinum; CO = carbon monoxide; PPh3 = triphenylphosphine; z = 1+ or 2+) is a Pt nanocluster (Pt NC) that can be synthesized with atomic precision in air. The present study demonstrates that it is possible to prepare a Pt17-supported carbon black (CB) catalyst (Pt17/CB) with 2.1 times higher oxygen reduction reaction (ORR) activity than commercial Pt nanoparticles/CB by the adsorption of [Pt17(CO)12(PPh3)8]z onto CB and subsequent calcination of the catalyst. Density functional theory calculation strongly suggests that the high ORR activity of Pt17/CB originates from the surface Pt atoms that have an electronic structure appropriate for the progress of ORR. These results are expected to provide design guidelines for the fabrication of highly active ORR catalysts using Pt NCs with a diameter of about 1 nm and thereby enabling the use of reduced amounts of Pt in polymer electrolyte fuel cells.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Yusuke Mitomi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Naoki Nishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Ryuki Kurosaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Kazutaka Oiwa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tomoya Tanaka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Hinoki Hirase
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Sayuri Miyajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yoshiki Niihori
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - D J Osborn
- Department of Chemistry, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Takanori Koitaya
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| | - Gregory F Metha
- Department of Chemistry, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Toshihiko Yokoyama
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| | - Kenji Iida
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
16
|
Cesari C, Berti B, Bortoluzzi M, Femoni C, Funaioli T, Vivaldi FM, Iapalucci MC, Zacchini S. From M 6 to M 12, M 19 and M 38 molecular alloy Pt-Ni carbonyl nanoclusters: selective growth of atomically precise heterometallic nanoclusters. Dalton Trans 2023; 52:3623-3642. [PMID: 36866767 DOI: 10.1039/d2dt03607j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Heterometallic Chini-type clusters [Pt6-xNix(CO)12]2- (x = 0-6) were obtained by reactions of [Pt6(CO)12]2- with Ni-clusters such as [Ni6(CO)12]2-, [Ni9(CO)18]2- and [H2Ni12(CO)21]2-, or from [Pt9(CO)18]2- and [Ni6(CO)12]2-. The Pt/Ni composition of [Pt6-xNix(CO)12]2- (x = 0-6) depended on the nature of the reagents employed and their stoichiometry. Reactions of [Pt9(CO)18]2- with [Ni9(CO)18]2- and [H2Ni12(CO)21]2-, as well as reactions of [Pt12(CO)24]2- with [Ni6(CO)12]2-, [Ni9(CO)18]2- and [H2Ni12(CO)21]2-, afforded [Pt9-xNix(CO)18]2- (x = 0-9) species. [Pt6-xNix(CO)12]2- (x = 1-5) were converted into [Pt12-xNix(CO)21]4- (x = 2-10) upon heating in CH3CN at 80 °C, with almost complete retention of the Pt/Ni composition. Reaction of [Pt12-xNix(CO)21]4- (x ≈ 8) with HBF4·Et2O afforded the [HPt14+xNi24-x(CO)44]5- (x ≈ 0.7) nanocluster. Finally, [Pt19-xNix(CO)22]4- (x = 2-6) could be obtained by heating [Pt9-xNix(CO)18]2- (x = 1-3) in CH3CN at 80 °C, or [Pt6-xNix(CO)12]2- (2-4) in DMSO at 130 °C. The molecular structures of these new alloy nanoclusters have been determined by single crystal X-ray diffraction. The site preference of Pt and Ni within their metal cages has been computationally investigated. The electrochemical and IR spectroelectrochemical behavior of [Pt19-xNix(CO)22]4- (x = 3.11) has been studied and compared to the isostructural homometallic nanocluster [Pt19(CO)22]4-.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Beatrice Berti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Ca' Foscari University of Venice, Via Torino 155, 30175 Mestre (Ve), Italy
| | - Cristina Femoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Tiziana Funaioli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Federico Maria Vivaldi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Maria Carmela Iapalucci
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| |
Collapse
|
17
|
Funaki S, Kawawaki T, Okada T, Takemae K, Hossain S, Niihori Y, Naito T, Takagi M, Shimazaki T, Kikkawa S, Yamazoe S, Tachikawa M, Negishi Y. Improved activity for the oxygen evolution reaction using a tiara-like thiolate-protected nickel nanocluster. NANOSCALE 2023; 15:5201-5208. [PMID: 36789780 DOI: 10.1039/d2nr06952k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Practical electrochemical water splitting and carbon-dioxide reduction are desirable for a sustainable energy society. In particular, facilitating the oxygen evolution reaction (OER, the reaction at the anode) will increase the efficiency of these reactions. Nickel (Ni) compounds are excellent OER catalysts under basic conditions, and atomically precise Ni clusters have been actively studied to understand their complex reaction mechanisms. In this study, we evaluated the geometric/electronic structure of tiara-like metal nanoclusters [Nin(PET)2n; n = 4, 5, 6, where PET refers to phenylethanethiolate] with the same SR ligand. The geometric structure of Ni5(SR)10 was determined for the first time using single-crystal X-ray diffraction. Additionally, combined electrochemical measurements and X-ray absorption fine structure measurements revealed that Ni5(SR)10 easily forms an OER intermediate and therefore exhibits a high specific activity.
Collapse
Affiliation(s)
- Sota Funaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tomoshige Okada
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Kana Takemae
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sakiat Hossain
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshiki Niihori
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takumi Naito
- Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Makito Takagi
- Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Tomomi Shimazaki
- Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masanori Tachikawa
- Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
18
|
Sakamoto K, Masuda S, Takano S, Tsukuda T. Partially Thiolated Au 25 Cluster Anchored on Carbon Support via Noncovalent Ligand–Support Interactions: Active and Robust Catalyst for Aerobic Oxidation of Alcohols. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Kosuke Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
19
|
Zhou C, Pan P, Wei X, Lin Z, Chen C, Kang X, Zhu M. Horizontal expansion of biicosahedral M 13-based nanoclusters: resolving decades-long questions. NANOSCALE HORIZONS 2022; 7:1397-1403. [PMID: 36196687 DOI: 10.1039/d2nh00321j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For metal nanoclusters with the "cluster of clusters" intramolecular evolution pattern, most efforts have been made towards the vertical superposition of icosahedral nanobuilding blocks (e.g., from mono-icosahedral Au13 to bi-icosahedral Au25 and tri-icosahedral Au37), while the horizontal expansion of these rod-shaped multi-icosahedral aggregates was largely neglected. We herein report the horizontal expansion of the biicosahedral M25 cluster framework, yielding an [Au19Ag12(S-Adm)6(DPPM)6Cl7]2+ nanocluster that contains an Au13Ag12 kernel and six Au1(DPPM)1(S-Adm)1 peripheral wings. The structural determination of [Au19Ag12(S-Adm)6(DPPM)6Cl7]2+ resolved a decades-long question towards rod-shaped multi-icosahedral aggregates: how to load bidentate phosphine and bulky thiol ligands onto the nanocluster framework? The structural comparison between [Au19Ag12(S-Adm)6(DPPM)6Cl7]2+ and previously reported [Au13Ag12(PPh3)10Cl8]2+ or [Au13Ag12(SR)5(PPh3)10Cl2]2+ rationalized the unique packing of Au1(DPPM)1(S-Adm)1 motif structures on the surface of the former nanocluster. Overall, this work presents the horizontal expansion of rod-shaped multi-icosahedral nanoclusters, which provides new insights into the preparation of novel icosahedron-based aggregates with both vertically and horizontally growing extensions.
Collapse
Affiliation(s)
- Chuanjun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Peiyao Pan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Zidong Lin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Cheng Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
20
|
Liu T, Xue F, Chen Z, Cheng Z, Cao W, Wang B, Jin W, Xia Y, Zhang Y, Liu C. Bi4O5Br2 catalyzed selective oxidative of C=C double bonds to ketones with molecular oxygen under visible-light irradiation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Cesari C, Bortoluzzi M, Forti F, Gubbels L, Femoni C, Iapalucci MC, Zacchini S. 2-D Molecular Alloy Ru-M (M = Cu, Ag, and Au) Carbonyl Clusters: Synthesis, Molecular Structure, Catalysis, and Computational Studies. Inorg Chem 2022; 61:14726-14741. [PMID: 36069711 PMCID: PMC9490753 DOI: 10.1021/acs.inorgchem.2c02099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/28/2022]
Abstract
The reactions of [HRu3(CO)11]- (1) with M(I) (M = Cu, Ag, and Au) compounds such as [Cu(CH3CN)4][BF4], AgNO3, and Au(Et2S)Cl afford the 2-D molecular alloy clusters [CuRu6(CO)22]- (2), [AgRu6(CO)22]- (3), and [AuRu5(CO)19]- (4), respectively. The reactions of 2-4 with PPh3 result in mixtures of products, among which [Cu2Ru8(CO)26]2- (5), Ru4(CO)12(CuPPh3)4 (6), Ru4(CO)12(AgPPh3)4 (7), Ru(CO)3(PPh3)2 (8), and HRu3(OH)(CO)7(PPh3)3 (9) have been isolated and characterized. The molecular structures of 2-6 and 9 have been determined by single-crystal X-ray diffraction. The metal-metal bonding within 2-5 has been computationally investigated by density functional theory methods. In addition, the [NEt4]+ salts of 2-4 have been tested as catalyst precursors for transfer hydrogenation on the model substrate 4-fluoroacetophenone using iPrOH as a solvent and a hydrogen source.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Center
for Chemical Catalysis—C3, University
of Bologna, Viale Risorgimento
4, 40136 Bologna, Italy
| | - Marco Bortoluzzi
- Dipartimento
di Scienze Molecolari e Nanosistemi, Ca’
Foscari University of Venice, Via Torino 155, 30175 Mestre (Ve), Italy
| | - Francesca Forti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Center
for Chemical Catalysis—C3, University
of Bologna, Viale Risorgimento
4, 40136 Bologna, Italy
| | - Lisa Gubbels
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Cristina Femoni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Maria Carmela Iapalucci
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Zacchini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
- Center
for Chemical Catalysis—C3, University
of Bologna, Viale Risorgimento
4, 40136 Bologna, Italy
| |
Collapse
|
22
|
Cesari C, Berti B, Funaioli T, Femoni C, Iapalucci MC, Pontiroli D, Magnani G, Riccò M, Bortoluzzi M, Vivaldi FM, Zacchini S. Atomically Precise Platinum Carbonyl Nanoclusters: Synthesis, Total Structure, and Electrochemical Investigation of [Pt 27(CO) 31] 4- Displaying a Defective Structure. Inorg Chem 2022; 61:12534-12544. [PMID: 35920640 PMCID: PMC9387524 DOI: 10.1021/acs.inorgchem.2c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 11/30/2022]
Abstract
The molecular Pt nanocluster [Pt27(CO)31]4- (14-) was obtained by thermal decomposition of [Pt15(CO)30]2- in tetrahydrofuran under a H2 atmosphere. The reaction of 14- with increasing amounts of HBF4·Et2O afforded the previously reported [Pt26(CO)32]2- (32-) and [Pt26(CO)32]- (3-). The new nanocluster 14- was characterized by IR and UV-visible spectroscopy, single-crystal X-ray diffraction, direct-current superconducting quantum interference device magnetometry, cyclic voltammetry, IR spectroelectrochemistry (IR SEC), and electrochemical impedance spectroscopy. The cluster displays a cubic-close-packed Pt27 framework generated by the overlapping of four ABCA layers, composed of 3, 7, 11, and 6 atoms, respectively, that encapsulates a fully interstitial Pt4 tetrahedron. One Pt atom is missing within layer 3, and this defect (vacancy) generates local deformations within layers 2 and 3. These local deformations tend to repair the defect (missing atom) and increase the number of Pt-Pt bonding contacts, minimizing the total energy. The cluster 14- is perfectly diamagnetic and displays a rich electrochemical behavior. Indeed, six different oxidation states have been characterized by IR SEC, unraveling the series of 1n- (n = 3-8) isostructural nanoclusters. Computational studies have been carried out to further support the interpretation of the experimental data.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Beatrice Berti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Tiziana Funaioli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Cristina Femoni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Maria Carmela Iapalucci
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Daniele Pontiroli
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, and INSTM, Università degli Studi di Parma, Viale delle Scienze 7/a, Parma 43124, Italy
| | - Giacomo Magnani
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, and INSTM, Università degli Studi di Parma, Viale delle Scienze 7/a, Parma 43124, Italy
| | - Mauro Riccò
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, and INSTM, Università degli Studi di Parma, Viale delle Scienze 7/a, Parma 43124, Italy
| | - Marco Bortoluzzi
- Dipartimento
di Scienze Molecolari e Nanosistemi, Ca’Foscari
University of Venice, Via Torino 155, Mestre (Ve) 30175, Italy
| | - Federico Maria Vivaldi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Stefano Zacchini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| |
Collapse
|
23
|
Negishi Y, Horihata H, Ebina A, Miyajima S, Nakamoto M, Ikeda A, Kawawaki T, Hossain S. Selective formation of [Au 23(SPh t Bu) 17] 0, [Au 26Pd(SPh t Bu) 20] 0 and [Au 24Pt(SC 2H 4Ph) 7(SPh t Bu) 11] 0 by controlling ligand-exchange reaction. Chem Sci 2022; 13:5546-5556. [PMID: 35694356 PMCID: PMC9116332 DOI: 10.1039/d2sc00423b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
To use atomically precise metal nanoclusters (NCs) in various application fields, it is essential to establish size-selective synthesis methods for the metal NCs. Studies on thiolate (SR)-protected gold NCs (Au n (SR) m NCs) revealed that the atomically precise Au n (SR) m NC, which has a different chemical composition from the precursor, can be synthesized size-selectively by inducing transformation in the framework structure of the metal NCs by a ligand-exchange reaction. In this study, we selected the reaction of [Au25(SC2H4Ph)18]- (SC2H4Ph = 2-phenylethanethiolate) with 4-tert-butylbenzenethiol ( t BuPhSH) as a model ligand-exchange reaction and attempted to obtain new metal NCs by changing the amount of thiol, the central atom of the precursor NCs, or the reaction time from previous studies. The results demonstrated that [Au23(SPh t Bu)17]0, [Au26Pd(SPh t Bu)20]0 (Pd = palladium) and [Au24Pt(SC2H4Ph)7(SPh t Bu)11]0 (Pt = platinum) were successfully synthesized in a high proportion. To best of our knowledge, no report exists on the selective synthesis of these three metal NCs. The results of this study show that a larger variety of metal NCs could be synthesized size-selectively than at present if the ligand-exchange reaction is conducted while changing the reaction conditions and/or the central atoms of the precursor metal NCs from previous studies.
Collapse
Affiliation(s)
- Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
- Research Institute for Science & Technology, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Hikaru Horihata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Ayano Ebina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Sayuri Miyajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Mana Nakamoto
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Ayaka Ikeda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
- Research Institute for Science & Technology, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| |
Collapse
|
24
|
Saruyama M, Pelicano CM, Teranishi T. Bridging electrocatalyst and cocatalyst studies for solar hydrogen production via water splitting. Chem Sci 2022; 13:2824-2840. [PMID: 35382478 PMCID: PMC8905826 DOI: 10.1039/d1sc06015e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Solar-driven water-splitting has been considered as a promising technology for large-scale generation of sustainable energy for succeeding generations. Recent intensive efforts have led to the discovery of advanced multi-element-compound water-splitting electrocatalysts with very small overpotentials in anticipation of their application to solar cell-assisted water electrolysis. Although photocatalytic and photoelectrochemical water-splitting systems are more attractive approaches for scaling up without much technical complexity and high investment costs, improving their efficiencies remains a huge challenge. Hybridizing photocatalysts or photoelectrodes with cocatalysts has been an effective scheme to enhance their overall solar energy conversion efficiencies. However, direct integration of highly-active electrocatalysts as cocatalysts introduces critical factors that require careful consideration. These additional requirements limit the design principle for cocatalysts compared with electrocatalysts, decelerating development of cocatalyst materials. This perspective first summarizes the recent advances in electrocatalyst materials and the effective strategies to assemble cocatalyst/photoactive semiconductor composites, and further discusses the core principles and tools that hold the key in designing advanced cocatalysts and generating a deeper understanding on how to further push the limits of water-splitting efficiency.
Collapse
Affiliation(s)
- Masaki Saruyama
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | | | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| |
Collapse
|
25
|
Li X, Hou Y, Wu C, Du Q, Jiao K. Interlink among catalyst loading, transport and performance of proton exchange membrane fuel cells: a pore-scale study. NANOSCALE HORIZONS 2022; 7:255-266. [PMID: 35037684 DOI: 10.1039/d1nh00501d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An optimum balance between performance and Pt loading is critically important for the commercialization of proton exchange membrane (PEM) fuel cells. This research aims to investigate the interlink among Pt loading, reactive transport, and performance. An advanced pore-scale model is developed to describe the coupled reactive transport in the catalyst layer (CL) with the reactant gas, protons, and electrons all considered. The CL microstructure is stochastically reconstructed as a computational domain, and the physicochemical phenomena inside CLs are resolved by a multi-component lattice Boltzmann (LB) model. The results show that the electronic potential drop is not sensitive to Pt loading, while the ionic potential drop is much higher. The distributions of local overpotential and the reaction rate are similar with peak values near the membrane, indicating the importance of proton conduction. A high Pt loading could decrease the local transport loss for a shorter path to catalyst sites, but increases the overall transport resistance for a thicker structure. Although a larger electrochemical surface area (ECSA) is provided under a high Pt loading, a low Pt loading (0.1 mg cm-2) is suggested for high current conditions (2 A cm-2) where the transport loss is the main factor restricting the performance.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China.
| | - Yuze Hou
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China.
| | - Chengru Wu
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China.
| | - Qing Du
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China.
| | - Kui Jiao
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
26
|
Masuda S, Takano S, Yamazoe S, Tsukuda T. Synthesis of active, robust and cationic Au 25 cluster catalysts on double metal hydroxide by long-term oxidative aging of Au 25(SR) 18. NANOSCALE 2022; 14:3031-3039. [PMID: 34989757 DOI: 10.1039/d1nr07493h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthesis of an atomically precise Au25 cluster catalyst was attempted by long-term, low-temperature aging of Au25(BaET)18 (BaET-H = 2-(Boc-amino)ethanethiol) on various double metal hydroxide (DMH) supports. X-ray absorption fine structure analysis revealed that bare Au25 clusters with high loading (1 wt%) were successfully generated on the DMH containing Co and Ce (Co3Ce) by oxidative aging in air at 150 °C for >12 h. X-ray absorption near-edge structure and X-ray photoelectron spectroscopies showed that the Au25 clusters on Co3Ce were positively charged. The Au25/Co3Ce catalyst thus synthesized exhibited superior catalytic performance in the aerobic oxidation of benzyl alcohol under ambient conditions (TOF = 1097 h-1 with >97% selectivity to benzoic acid) and high durability owing to a strong anchoring effect. Based on kinetic experiments, we propose that abstraction of hydride from α-carbon of benzyl alkoxide by Au25 is the rate-determining step of benzyl alcohol oxidation by Au25/Co3Ce.
Collapse
Affiliation(s)
- Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
27
|
Kawawaki T, Kawachi M, Yazaki D, Akinaga Y, Hirayama D, Negishi Y. Development and Functionalization of Visible-Light-Driven Water-Splitting Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:344. [PMID: 35159689 PMCID: PMC8838403 DOI: 10.3390/nano12030344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023]
Abstract
With global warming and the depletion of fossil resources, our fossil fuel-dependent society is expected to shift to one that instead uses hydrogen (H2) as a clean and renewable energy. To realize this, the photocatalytic water-splitting reaction, which produces H2 from water and solar energy through photocatalysis, has attracted much attention. However, for practical use, the functionality of water-splitting photocatalysts must be further improved to efficiently absorb visible (Vis) light, which accounts for the majority of sunlight. Considering the mechanism of water-splitting photocatalysis, researchers in the various fields must be employed in this type of study to achieve this. However, for researchers in fields other than catalytic chemistry, ceramic (semiconductor) materials chemistry, and electrochemistry to participate in this field, new reviews that summarize previous reports on water-splitting photocatalysis seem to be needed. Therefore, in this review, we summarize recent studies on the development and functionalization of Vis-light-driven water-splitting photocatalysts. Through this summary, we aim to share current technology and future challenges with readers in the various fields and help expedite the practical application of Vis-light-driven water-splitting photocatalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Center for Space System Innovation, Tokyo University of Science, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masanobu Kawachi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Daichi Yazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Yuki Akinaga
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Daisuke Hirayama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Center for Space System Innovation, Tokyo University of Science, Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
28
|
Negishi Y. Metal-nanocluster Science and Technology: My Personal History and Outlook. Phys Chem Chem Phys 2022; 24:7569-7594. [DOI: 10.1039/d1cp05689a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal nanoclusters (NCs) are among the leading targets in research of nanoscale materials, and elucidation of their properties (science) and development of control techniques (technology) have been continuously studied for...
Collapse
|
29
|
Kawawaki T, Shimizu N, Mitomi Y, Yazaki D, Hossain S, Negishi Y. Supported, ∼1-nm-Sized Platinum Clusters: Controlled Preparation and Enhanced Catalytic Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Nobuyuki Shimizu
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Yusuke Mitomi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Daichi Yazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| |
Collapse
|
30
|
Cesari C, Funaioli T, Berti B, Femoni C, Iapalucci MC, Vivaldi FM, Zacchini S. Atomically Precise Ni-Pd Alloy Carbonyl Nanoclusters: Synthesis, Total Structure, Electrochemistry, Spectroelectrochemistry, and Electrochemical Impedance Spectroscopy. Inorg Chem 2021; 60:16713-16725. [PMID: 34672566 PMCID: PMC8564757 DOI: 10.1021/acs.inorgchem.1c02582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Indexed: 12/28/2022]
Abstract
The molecular nanocluster [Ni36-xPd5+x(CO)46]6- (x = 0.41) (16-) was obtained from the reaction of [NMe3(CH2Ph)]2[Ni6(CO)12] with 0.8 molar equivalent of [Pd(CH3CN)4][BF4]2 in tetrahydrofuran (thf). In contrast, [Ni37-xPd7+x(CO)48]6- (x = 0.69) (26-) and [HNi37-xPd7+x(CO)48]5- (x = 0.53) (35-) were obtained from the reactions of [NBu4]2[Ni6(CO)12] with 0.9-1.0 molar equivalent of [Pd(CH3CN)4][BF4]2 in thf. After workup, 35- was extracted in acetone, whereas 26- was soluble in CH3CN. The total structures of 16-, 26-, and 35- were determined with atomic precision by single-crystal X-ray diffraction. Their metal cores adopted cubic close packed structures and displayed both substitutional and compositional disorder, in light of the fact that some positions could be occupied by either Ni or Pd. The redox behavior of these new Ni-Pd molecular alloy nanoclusters was investigated by cyclic voltammetry and in situ infrared spectroelectrochemistry. All three compounds 16-, 26-, and 35- displayed several reversible redox processes and behaved as electron sinks and molecular nanocapacitors. Moreover, to gain insight into the factors that affect the current-potential profiles, cyclic voltammograms were recorded at both Pt and glassy carbon working electrodes and electrochemical impedance spectroscopy experiments performed for the first time on molecular carbonyl nanoclusters.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Tiziana Funaioli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Beatrice Berti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Cristina Femoni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Maria Carmela Iapalucci
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Federico Maria Vivaldi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Stefano Zacchini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
31
|
Abstract
Significant progress has been made in both fields of atomically precise metal nanoclusters (NCs) and metal-organic frameworks (MOFs) in recent years. A promising direction is to integrate these two classes of materials for creating unique composites with improved properties for catalysis and other applications. NCs incorporated with MOFs exhibit an optimized catalytic performance in many catalytic reactions, in which MOFs play a vital supporting role or as cocatalysts. In this Perspective, we first provide a brief summary of the methods that have been developed for the preparation of NCs/MOF composites and the characteristics of these strategies are analyzed. Following that, some recent works are highlighted to demonstrate the crucial role of MOF matrices in the enhancement of NCs catalytic properties. Finally, we outline some potentially important aspects for future work. This Perspective is in hopes of stimulating more interest in the research on the integration of NCs with MOFs toward functional materials.
Collapse
Affiliation(s)
- Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
32
|
Eisen C, Chin JM, Reithofer MR. Catalytically Active Gold Nanomaterials Stabilized by N-heterocyclic Carbenes. Chem Asian J 2021; 16:3026-3037. [PMID: 34399027 PMCID: PMC8597167 DOI: 10.1002/asia.202100731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Indexed: 12/04/2022]
Abstract
Solid supported or ligand capped gold nanomaterials (AuNMs) emerged as versatile and recyclable heterogeneous catalysts for a broad variety of conversions in the ongoing catalytic 'gold rush'. Existing at the border of homogeneous and heterogeneous catalysis, AuNMs offer the potential to merge high catalytic activity with significant substrate selectivity. Owing to their strong binding towards the surface atoms of AuMNs, NHCs offer tunable activation of surface atoms while maintaining selectivity and stability of the NM even under challenging conditions. This work summarizes well-defined catalytically active NHC capped AuNMs including spherical nanoparticles and atom-precise nanoclusters as well as the important NHC design choices towards activity and (stereo-)selectivity enhancements.
Collapse
Affiliation(s)
- Constantin Eisen
- Department of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Jia Min Chin
- Department of Physical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Michael R. Reithofer
- Department of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| |
Collapse
|
33
|
Zhou M, Qi C, Yan X, Li X, Jin S, Zhu M. Rapid Conversion of a Au 9 Ag 12 into a Au x Ag 16-x Nanocluster via Bisphosphine Ligand Engineering. Chemistry 2021; 27:17554-17558. [PMID: 34643967 DOI: 10.1002/chem.202102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 11/09/2022]
Abstract
The [Aux Ag16-x (SAdm)8 (Dppe)2 ] nanocluster with aggregation-induced emission (AIE) was synthesized from a non-fluorescent [Au9 Ag12 (SAdm)4 (Dppm)6 Cl6 ](SbF6 )3 nanocluster via a ligand-exchange engineering (Dppe=1,2-Bis(diphenylphosphino)ethane, Dppm=Bis(diphenylphosphino)methane, HSAdm=1-Adamantanethiol). The nanocluster has a Au-doped icosahedral Aux Ag13-x core, capped by two Ag(SR)3 , one Ag(SR)2 and two Dppe ligands. By changing the achiral Dppe ligand into a chiral dbpb ligand ((2S,3S)-(-)-Bis(diphenylphosphino)butane or (2R,3R)-(+)-2,3-Bis(diphenylphosphino)butane), chiral nanoclusters are obtained. ESI-MS and UV-vis spectroscopy were performed to track the reaction. This work provides guidance for the construction of new clusters by etching clusters with multidentate phosphine ligands.
Collapse
Affiliation(s)
- Manman Zhou
- Department of Chemistry and Centre for, Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Chunxia Qi
- Department of Chemical Engineering, Hefei Normal University, Hefei Lianhua Rd 1688, Hefei, 230601, P. R. China
| | - Xiaoxun Yan
- Department of Chemistry and Centre for, Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xiaowu Li
- Department of Chemistry and Centre for, Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Shan Jin
- Department of Chemistry and Centre for, Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for, Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for, Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
34
|
Hossain S, Miyajima S, Iwasa T, Kaneko R, Sekine T, Ikeda A, Kawawaki T, Taketsugu T, Negishi Y. [Ag 23Pd 2(PPh 3) 10Cl 7] 0: A new family of synthesizable bi-icosahedral superatomic molecules. J Chem Phys 2021; 155:024302. [PMID: 34266257 DOI: 10.1063/5.0057005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Icosahedral noble-metal 13-atom nanoclusters (NCs) can form connected structures, which can be regarded as superatomic molecules, by vertex sharing. However, there have been very few reports on the superatomic molecules formed using silver (Ag) as the base element. In this study, we synthesized [Ag23Pd2(PPh3)10Cl7]0 (Pd = palladium, PPh3 = triphenylphosphine, Cl = chloride), in which two icosahedral 13-atom NCs are connected, and elucidated its geometric and electronic structures to clarify what type of superatomic molecules can be synthesized. The results revealed that [Ag23Pd2(PPh3)10Cl7]0 is a synthesizable superatomic molecule. Single crystal x-ray diffraction analysis showed that the metal-metal distances in and between the icosahedral structures of [Ag23Pd2(PPh3)10Cl7]0 are slightly shorter than those of previously reported [Ag23Pt2(PPh3)10Cl7]0, whereas the metal-PPh3 distances are slightly longer. On the basis of several experiments and density functional theory calculations, we concluded that [Ag23Pd2(PPh3)10Cl7]0 and previously reported [Ag23Pt2(PPh3)10Cl7]0 are more stable than [Ag25(PPh3)10Cl7]2+ because of their stronger superatomic frameworks (metal cores). These findings are expected to lead to clear design guidelines for creation of new superatomic molecules.
Collapse
Affiliation(s)
- Sakiat Hossain
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sayuri Miyajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Ryo Kaneko
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Taishu Sekine
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Ayaka Ikeda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Tokuhisa Kawawaki
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yuichi Negishi
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|