1
|
Panda J, Sahu J, Parida K. Zn 0.5Cd 0.5Se quantum dot-integrated MOF-derived C/N-CeO 2 photocatalyst for enhanced H 2O 2 production and O 2 evolution reactions. NANOSCALE 2025; 17:6580-6592. [PMID: 39968747 DOI: 10.1039/d5nr00287g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Herein, a rational strategy is presented to reduce the sluggish reaction kinetics and inefficient charge carrier separation of heterojunctions while enhancing their opto-electronic properties. A 1D-0D heterojunction, i.e., MOF-derived C/N-CeO2/Zn0.5Cd0.5Se quantum dot (CZCSe-1) hybrid material, was constructed to address the limitations associated with the H2O2 production and O2 evolution reactions through a facile reflux treatment. As anticipated, the optimised CZCSe-1 composite exhibited an impressive H2O2 production rate of 2820.43 μmol g-1 h-1, which was 1.7- and 2.1-fold higher than those of pristine C/N-CeO2 and ZCSe, respectively, and it exhibited stability up to four cycles. Additionally, an O2 evolution rate of 234.89 mmol g-1 h-1 was recorded for CZCSe-1, which showed superior activity over other materials previously reported in the literature. It was revealed that the outstanding photocatalytic performance was attributed to the effective anchoring of 0D ZCSe onto vacancy-rich C/N-CeO2 nanorods, displaying improved charge separation as obtained from the Pl, EIS, TPC and maximized redox capability analyses. The charge transfer dynamics in the CZCSe-1 composite via the S-scheme heterojunction was further investigated through free radical detection (ESR analysis) and work function study (VB-XPS). This work offers a new approach for optimizing economic metal oxide-based photocatalysts for H2O2 production and other applications.
Collapse
Affiliation(s)
- Jayashree Panda
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| | - Jyotirmayee Sahu
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| |
Collapse
|
2
|
Haris FFP, Rajeev A, Poyil MM, Kelappan NK, Sasi S. Development of a MOF-5/g-C 3N 4 nanocomposite: an effective type 2 heterojunction photocatalyst for rhodamine B dye degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60298-60313. [PMID: 39375266 DOI: 10.1007/s11356-024-35230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
The field of environmental and water remediation faces a significant challenge in removing organic dyes from wastewater, particularly Rhodamine B (RhB), a stubborn dye used in various industries. Traditional treatment methods struggle with its resistance to decomposition, posing risks to water quality, human health, and aquatic life. This study demonstrates a novel approach to enhance photocatalytic efficiency for RhB degradation by constructing a MOF-5/g-C3N4 composite through a facile mechanical grinding method, which is unprecedented. The composite addresses the limitations of g-C3N4, such as rapid recombination of electron-hole pairs, low electron transfer rates, and small surface area, by forming a heterojunction with MOF-5. The composite exhibits enhanced photocatalytic efficiency for the degradation of RhB under sunlight, with a degradation of 91.5% achieved within 90 min. Optimization studies highlight the importance of pH and catalyst dosage in the degradation process. The reusability test shows consistent performance over five successive cycles, maintaining a degradation efficiency of over 90%. Total organic carbon (TOC) analyses confirm the mineralization of the dye solution to 82.05% after 90 min of irradiation, demonstrating the environmental benignity of the composite. Trapping experiments suggest the involvement of superoxide radicals, electrons, and holes in the photocatalytic mechanism. This study introduces a promising strategy for addressing challenges in dye degradation through innovative composite materials.
Collapse
Affiliation(s)
| | - Arya Rajeev
- Department of Chemistry, Maharaja's College, Park Avenue Road, Kochi, 682301, Kerala, India
| | - Mufeeda Meppally Poyil
- Department of Chemistry, Maharaja's College, Park Avenue Road, Kochi, 682301, Kerala, India
| | | | - Sreesha Sasi
- Department of Chemistry, Maharaja's College, Park Avenue Road, Kochi, 682301, Kerala, India.
| |
Collapse
|
3
|
Yeganeh M, Sobhi HR, Fallah S, Ghambarian M, Esrafili A. Sono-assisted photocatalytic degradation of ciprofloxacin in aquatic media using g-C 3N 4/MOF-based nanocomposite under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35811-35823. [PMID: 38743329 DOI: 10.1007/s11356-024-33222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
This research study is centered on the sono-assisted photocatalytic degradation of a well-known antibiotic (ciprofloxacin; CIP) in aquatic media using a g-C3N4/NH2-UiO-66 (Zr) catalyst under visible light irradiation. Initially, the catalyst was prepared by a simple method, and its physiochemical features were thoroughly analyzed by XRD, FT-IR, FE-SEM, EDX, EDS-Dot-Mapping, and UV-Vis analytical techniques. After that, the impact of several influential factors affecting the performance of the applied sono-assisted photocatalytic process such as the initial concentration of CIP, solution pH, catalyst dosage, light intensity, and ultrasound power was fully assessed, and the optimal conditions were established. After 75 min of the sono-assisted photocatalytic treatment, the complete degradation of CIP (10 mg/L) was accomplished under the condition as follows: g-C3N4/NH2-UiO-66 (Zr), 0.6 g/L; pH, 5.0, and ultrasound power, light intensity 75 mw/cm2, 200 W/m2. Meanwhile, the photocatalytic degradation of CIP followed the pseudo-first-order kinetic model. In addition, the scavenger experiments demonstrated that OH˚ and O2°- radicals played a key role in the sono-assisted photocatalytic degradation process. It is also acknowledged that the applied catalyst was reused for five consecutive runs with a minor loss observed in its degradation efficiency. In a further experiment, a significant synergistic effect with regard to the degradation of CIP was observed once all three major parameters (visible light, ultrasound waves, and catalyst) were used in combination compared to each used alone. To sum up, it is thought that the integration of g-C3N4/MOF-based catalyst, ultrasound waves, and visible light irradiation could be potentially applied as a promising strategy for the degradation of various pharmaceuticals on account of high degradation performance, simple operation, excellent reusability, and eco-friendly approach.
Collapse
Affiliation(s)
- Mojtaba Yeganeh
- Research Center for Environmental Health Technology Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sevda Fallah
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshty University of Medical Science, Tehran, Iran
| | - Mahnaz Ghambarian
- Iranian Research and Development Center for Chemical Industries, ACECR, Tehran, Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Panda J, Tripathy SP, Dash S, Ray A, Behera P, Subudhi S, Parida K. Inner transition metal-modulated metal organic frameworks (IT-MOFs) and their derived nanomaterials: a strategic approach towards stupendous photocatalysis. NANOSCALE 2023; 15:7640-7675. [PMID: 37066602 DOI: 10.1039/d3nr00274h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photocatalysis, as an amenable and effective process, can be adopted for pollution remediation and to alleviate the ongoing energy crisis. In this case, recently, metal organic frameworks (MOFs) have attracted increasing attention in the field of photocatalysis owning to their unique characteristics including large specific surface area, tuneable pore architecture, mouldable framework composition, tuneable band structure, and exceptional photon absorption tendency complimented with superior anti-recombination of excitons. Among the plethora of frameworks, inner transition metal based-MOFs (IT-MOFs) have started to garner significant traction as photocatalysts due to their distinct characteristics compared to conventional transition metal-based frameworks. Typically, IT-MOFs have the tendency to generate high nuclearity clusters and possess abundant Lewis acidic sites, together with mixed valency, which aids in easily converting redox couples, thereby making them a suitable candidate for various photocatalytic reactions. Therefore, in this contribution, we aim to summarise the excellent photocatalytic performance of IT-MOFs and their composites accompanied by a thorough discussion of their topological changes with a variation in the structure of the metal cluster, fabrication routes, morphological features, and physico-chemical properties together with a brief discussion of computational findings. Moreover, we attempt to explore the scientific understanding of the functionalities of IT-MOFs and their composites with detailed mechanistic pathways for in-depth clarity towards photocatalysis. Furthermore, we present a comprehensive analysis of IT-MOFs for various crucial photocatalytic applications such as H2/O2 evolution, organic pollutant degradation, organic transformation, and N2 and CO2 reduction. In addition, we discuss the measures employed to enhance their performance with some future directions to address the challenges with IT-MOF-based nanomaterials.
Collapse
Affiliation(s)
- Jayashree Panda
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Suraj Prakash Tripathy
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Srabani Dash
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Asheli Ray
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Pragyandeepti Behera
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Satyabrata Subudhi
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| |
Collapse
|
5
|
Porcu S, Secci F, Ricci PC. Advances in Hybrid Composites for Photocatalytic Applications: A Review. Molecules 2022; 27:molecules27206828. [PMID: 36296421 PMCID: PMC9607189 DOI: 10.3390/molecules27206828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Heterogeneous photocatalysts have garnered extensive attention as a sustainable way for environmental remediation and energy storage process. Water splitting, solar energy conversion, and pollutant degradation are examples of nowadays applications where semiconductor-based photocatalysts represent a potentially disruptive technology. The exploitation of solar radiation for photocatalysis could generate a strong impact by decreasing the energy demand and simultaneously mitigating the impact of anthropogenic pollutants. However, most of the actual photocatalysts work only on energy radiation in the Near-UV region (<400 nm), and the studies and development of new photocatalysts with high efficiency in the visible range of the spectrum are required. In this regard, hybrid organic/inorganic photocatalysts have emerged as highly potential materials to drastically improve visible photocatalytic efficiency. In this review, we will analyze the state-of-art and the developments of hybrid photocatalysts for energy storage and energy conversion process as well as their application in pollutant degradation and water treatments.
Collapse
Affiliation(s)
- Stefania Porcu
- Department of Physics, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Francesco Secci
- Department of Chemical and Geological Science, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, S.P. No. 8 Km 0.700, 09042 Monserrato, Italy
- Correspondence: ; Tel.: +39-070675-4821
| |
Collapse
|
6
|
Karimi M, Sadeghi S, Mohebali H, Bakhti H, Mahjoub A, Heydari A. Confined-based catalyst investigation through the comparative functionalization and defunctionalization of Zr-MOF. RSC Adv 2022; 12:16358-16368. [PMID: 35754901 PMCID: PMC9168834 DOI: 10.1039/d1ra07767h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
In metal-organic frameworks, confined space as a chemical nanoreactor is as important as organocatalysis or coordinatively unsaturated metal site catalysis. In the present study, a set of mixed-ligand structures with UiO-66 architecture have been prepared. To the best of our knowledge, for the first time, structures derived by the solvothermal mixing ligand method and ultrasonic-assisted linker exchange approaches have been compared. Additionally, the relationship between the preparation method, structural properties, and catalytic efficiency of the prepared materials in the Knoevenagel condensation of aldehydes has been investigated. The prepared catalyst is very stable and can be recovered and reused for at least ten periods.
Collapse
Affiliation(s)
- Meghdad Karimi
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| | - Samira Sadeghi
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| | - Haleh Mohebali
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| | - Hamzeh Bakhti
- Chemistry Department, Islamic Azad University Boroujerd Branch Borujerd Iran
| | - Alireza Mahjoub
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| | - Akbar Heydari
- Chemistry Department, Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran +98-21-82883444
| |
Collapse
|
7
|
Lu G, Chu F, Huang X, Li Y, Liang K, Wang G. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214240] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Amino acid-assisted ferrite/MOF composite formation for visible-light induced photocatalytic cascade C=C aerobic oxidative cleavage functionalization. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Karimi M, Sadeghi S, Mohebali H, Azarkhosh Z, Safarifard V, Mahjoub A, Heydari A. Fluorinated solvent-assisted photocatalytic aerobic oxidative amidation of alcohols via visible-light-mediated HKUST-1/Cs-POMoW catalysis. NEW J CHEM 2021. [DOI: 10.1039/d1nj02401a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Successful synthesis and characterization of HKUST-1/Cs-POMoW binary composite, and application in the photocatalytic aerobic oxidative amidation reaction of alcohols under light illuminating in the visible region.
Collapse
Affiliation(s)
- Meghdad Karimi
- Chemistry Department
- Tarbiat Modares University
- Tehran
- Iran
| | - Samira Sadeghi
- Chemistry Department
- Tarbiat Modares University
- Tehran
- Iran
| | - Haleh Mohebali
- Chemistry Department
- Tarbiat Modares University
- Tehran
- Iran
| | | | - Vahid Safarifard
- Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | | | - Akbar Heydari
- Chemistry Department
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|