1
|
Sgariglia MA, Garibotto FM, Soberón JR, Angelina EL, Andujar SA, Vattuone MA. Study of polyphenols from Caesalpinia paraguariensis as α-glucosidase inhibitors: kinetics and structure–activity relationship. NEW J CHEM 2022. [DOI: 10.1039/d1nj04619e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ellagic derivatives isolated from Caesalpinia paraguariensis bark: (1) ellagic acid, (2) 3-O-methylellagic, (3) 3,3′-O-dimethylellagic acid, and (4) 3,3′-O-dimethylellagic-4-O-β-d-xylopyranoside and their binding modes on α-glucosidase.
Collapse
Affiliation(s)
- Melina A. Sgariglia
- National University of Tucumán, Faculty of Biochemistry Chemistry and Pharmacy, Pharmacological Studies Institute, Phytochemical Cathedra, Tucumán (4000), Argentina
- National Scientific and Technical Research Council (CONICET-Argentina), Argentina
| | - Francisco M. Garibotto
- Nacional University of San Luis, Faculty of Chemistry Biochemistry and Pharmacy, Argentina
- IMIBIO-CONICET-San Luis (5700), Argentina
| | - José R. Soberón
- National University of Tucumán, Faculty of Biochemistry Chemistry and Pharmacy, Pharmacological Studies Institute, Phytochemical Cathedra, Tucumán (4000), Argentina
- National Scientific and Technical Research Council (CONICET-Argentina), Argentina
| | - Emilio L. Angelina
- Lab. Estructura Molecular y Propiedades, IQUIBA-NEA, Universidad Nacional del Nordeste, CONICET, FACENA, Corrientes (3400), Argentina
| | - Sebastián A. Andujar
- Nacional University of San Luis, Faculty of Chemistry Biochemistry and Pharmacy, Argentina
- IMIBIO-CONICET-San Luis (5700), Argentina
| | - Marta A. Vattuone
- National Scientific and Technical Research Council (CONICET-Argentina), Argentina
| |
Collapse
|
2
|
Magar P, Parravicini O, Štěpánková Š, Svrčková K, Garro AD, Jendrzejewska I, Pauk K, Hošek J, Jampílek J, Enriz RD, Imramovský A. Novel Sulfonamide-Based Carbamates as Selective Inhibitors of BChE. Int J Mol Sci 2021; 22:9447. [PMID: 34502357 PMCID: PMC8430704 DOI: 10.3390/ijms22179447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
A series of 14 target benzyl [2-(arylsulfamoyl)-1-substituted-ethyl]carbamates was prepared by multi-step synthesis and characterized. All the final compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro, and the selectivity index (SI) was determined. Except for three compounds, all compounds showed strong preferential inhibition of BChE, and nine compounds were even more active than the clinically used rivastigmine. Benzyl {(2S)-1-[(2-methoxybenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5k), benzyl {(2S)-1-[(4-chlorobenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5j), and benzyl [(2S)-1-(benzylsulfamoyl)-4-methylpentan-2-yl]carbamate (5c) showed the highest BChE inhibition (IC50 = 4.33, 6.57, and 8.52 µM, respectively), indicating that derivatives 5c and 5j had approximately 5-fold higher inhibitory activity against BChE than rivastigmine, and 5k was even 9-fold more effective than rivastigmine. In addition, the selectivity index of 5c and 5j was approx. 10 and that of 5k was even 34. The process of carbamylation and reactivation of BChE was studied for the most active derivatives 5k, 5j. The detailed information about the mode of binding of these compounds to the active site of both BChE and AChE was obtained in a molecular modeling study. In this study, combined techniques (docking, molecular dynamic simulations, and QTAIM (quantum theory of atoms in molecules) calculations) were employed.
Collapse
Affiliation(s)
- Pratibha Magar
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (P.M.); (K.P.)
| | - Oscar Parravicini
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina; (O.P.); (A.D.G.)
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (Š.Š.); (K.S.)
| | - Katarina Svrčková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (Š.Š.); (K.S.)
| | - Adriana D. Garro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina; (O.P.); (A.D.G.)
| | | | - Karel Pauk
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (P.M.); (K.P.)
| | - Jan Hošek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
| | - Josef Jampílek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| | - Ricardo D. Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina; (O.P.); (A.D.G.)
| | - Aleš Imramovský
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (P.M.); (K.P.)
| |
Collapse
|