1
|
Lu C, Zandieh M, Zheng J, Liu J. Comparison of the peroxidase activities of iron oxide nanozyme with DNAzyme and horseradish peroxidase. NANOSCALE 2023; 15:8189-8196. [PMID: 37093157 DOI: 10.1039/d3nr01098h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Peroxidase-based assays are the most extensively used in bioanalytical sensors because of their simple colorimetric readout and high sensitivity owing to enzymatic signal amplification. To improve the stability, modification, and cost of protein-based enzymes, such as horseradish peroxidase (HRP), various enzyme mimics, such as DNAzymes and nanozymes, have emerged over the last few decades. In this study, we compared the peroxidase activities of HRP, a G-quadruplex (G4)-hemin DNAzyme, and Fe3O4 nanozymes in terms of activity and stability under different conditions. The reactions were much slower at pH 7 than at pH 4. At pH 4, the turnover rate of HRP (375 s-1) was faster than that of G4 DNAzyme (0.14 s-1) and Fe3O4 (6.1 × 10-4 s-1, calculated by surface Fe concentration). When normalized to mass concentrations, the trend was the same. Through observation of the reaction for a long time of 2 h, the changes in the color and UV-vis spectra were also different for these catalysts, indicating different reaction mechanisms among these catalysts. Moreover, different buffers and nanozyme sizes were found to influence the activity of the catalysts. Fe3O4 showed the highest stability compared to HRP and G4 DNAzyme after a catalytic reaction or incubation with H2O2 for a few hours. This study helps to understand the properties of catalysts and the development of novel catalysts with enzyme-mimicking activities for application in various fields.
Collapse
Affiliation(s)
- Chang Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
2
|
Chen X, Zheng X, Yu X, Li X, Lin Y, Lin H, Ye S, Huang X, Tang D, Lai W. Novel rapid coordination of ascorbic acid 2-phosphate and iron(III) as chromogenic substrate system based on Fe 2O 3 nanoparticle and application in immunoassay for the colorimetric detection of carcinoembryonic antigen. Talanta 2023; 258:124414. [PMID: 36889191 DOI: 10.1016/j.talanta.2023.124414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
This work for the first time reports on a simple and rapid colorimetric immunoassay with rapid coordination of ascorbic acid 2-phosphate (AAP) and iron (III) for determination of carcinoembryonic antigen (CEA, used as a model) by using Fe2O3 nanoparticle based-chromogenic substrate system. The signal was produced rapidly (1 min) from the coordination of AAP and iron (III) with color development of colorless to brown. TD-DFT calculation methods were employed to simulate the UV-Vis spectra of AAP-Fe2+ and AAP-Fe3+ complexes. Moreover, Fe2O3 nanoparticle could be dissolved with the aid of acid, thereby releasing free iron (III). Herein, a sandwich-type immunoassay was established based on Fe2O3 nanoparticle as labels. As target CEA concentration increased, the number of Fe2O3 labelled-antibodies (bound specifically) increased, resulting in loading more Fe2O3 nanoparticle on platform. The absorbance increased as the number of free iron (III), derived from Fe2O3 nanoparticle, increased. So, the absorbance of reaction solution is positively correlated with antigen concentration. Under optimal conditions, the current results showed good performance for CEA detection in the range 0.02-10.0 ng/mL with a detection limit of 11 pg/mL. Moreover, the repeatability, stability, and selectivity of the colorimetric immunoassay were also acceptable.
Collapse
Affiliation(s)
- Xuwei Chen
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Xuan Zheng
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Xiangyong Yu
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Xiaoqin Li
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Youxiu Lin
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China.
| | - Huizi Lin
- Department of Neonatology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350108, People's Republic of China.
| | - Shuai Ye
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Xinyu Huang
- Fujian Yigong Soft Packaging Technology Co., Ltd., Zhangzhou, 363000, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China.
| |
Collapse
|
3
|
Lv L, Hu J, Chen Q, Xu M, Jing C, Wang X. A switchable electrochemical hairpin-aptasensor for ochratoxin A detection based on the double signal amplification effect of gold nanospheres. NEW J CHEM 2022. [DOI: 10.1039/d1nj05729d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An OTA electrochemical sensor based on h-DNA and the double effect of gold nanospheres that can be applied for actual sample detection.
Collapse
Affiliation(s)
- Liangrui Lv
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Juanjuan Hu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qingqing Chen
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mingming Xu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chunyang Jing
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|