1
|
Zhao B, Kashtiban RJ, Huband S, Walker M, Walton RI. Cerium-Organic Framework UiO-66(Ce) as a Support for Nanoparticulate Gold for Use in Oxidation Catalysis. Chem Asian J 2024; 19:e202401035. [PMID: 39254915 PMCID: PMC11639647 DOI: 10.1002/asia.202401035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
An optimised synthesis of the metal-organic framework (MOF) UiO-66(Ce) is reported using a modulator-free route, yielding ~5 g of material with high crystallinity and 22 % ligand defect. Two methods are developed for loading gold nanoparticles onto the MOF. The first uses a double-solvent method to introduce HAuCl4 onto UiO-66(Ce), followed by reduction under 5 % H2 in N2, while the second is a novel one-pot method where HAuCl4 is added to the synthesis mixture, forming Au nanoparticles within the pores of the UiO-66(Ce) during crystallisation. Analysis using powder X-ray diffraction (PXRD), nitrogen adsorption isotherms, transmission electron microscopy and small-angle X-ray scattering (SAXS) reveals that the two-step double-solvent method yields gold crystallites on the external surface of the MOF particles that are visible by PXRD. In contrast, the one-pot method forms smaller gold crystallites, with a distribution of sizes centred on ~4 nm diameter as seen by SAXS, with evidence from PXRD for the smallest particles being present within the MOF structure. The Au-loaded UiO-66(Ce) materials are evaluated for the catalytic oxidation of vanillyl alcohol to vanillin at 60 °C. Our findings indicate that incorporating Au nanoparticles via the one-pot synthesis method, enhances redox activity, achieving 43 % conversion and 90 % selectivity towards vanillin.
Collapse
Affiliation(s)
- Baiwen Zhao
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Reza J. Kashtiban
- Department of PhysicsUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Steven Huband
- Department of PhysicsUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Marc Walker
- Department of PhysicsUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Richard I. Walton
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| |
Collapse
|
2
|
Yuan W, Li S, Ma X, Pang C, Wu Y, Wang M, Li B. MOF@Au NPs/aptamer fluorescent probe for the selective and sensitive detection of thiamethoxam. LUMINESCENCE 2023. [PMID: 38104966 DOI: 10.1002/bio.4651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/20/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
The luminescence performance of fluorescent reagents plays a crucial role in fluorescence analysis. Therefore, in this study, a novel bi-ligand Zn-based metal-organic framework, Au nanoparticle (NP) fluorescent material was synthesized using a hydrothermal method with Zn as the metal source. Simultaneously, a DNA aptamer was introduced as a molecular recognition element to develop a Zn-based MOF@Au NPs/DNA aptamer fluorescent probe for the ultra-trace detection of thiamethoxam residues in agricultural products. The probe captured different concentrations of the target molecule, thiamethoxam, through the DNA aptamer, causing a conformational change in the DNA aptamer and bursting the fluorescence of the probe, therefore establishing a fluorometric method for thiamethoxam detection. This method is highly sensitive due to the excellent luminescence properties of the Zn-based MOF@Au NPs, and the DNA aptamer can specifically recognize thiamethoxam, offering high selectivity. The linear range of the method was 2.5-6000 × 10-11 mol L-1 , with a detection limit of 8.33 × 10-12 mol L-1 . This method was applied to the determination of actual samples, such as bananas, and the spiked recovery rate was found to be in the range 84.05-109.07%. Overall, the proposed probe has high sensitivity, high selectivity, and easy operation for the detection of thiamethoxam residues in actual samples.
Collapse
Affiliation(s)
- Weiwei Yuan
- College of Food Science and Technology, and MOE, Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou, China
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China
| | - Shuhuai Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou, China
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China
| | - Xionghui Ma
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Chaohai Pang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Yuwei Wu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Mingyue Wang
- College of Food Science and Technology, and MOE, Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, China
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou, China
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China
| | - Bei Li
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou, China
| |
Collapse
|
3
|
Gholinejad M, Khezri R, Nayeri S, Vishnuraj R, Pullithadathil B. Gold nanoparticles supported on NiO and CuO: The synergistic effect toward enhanced reduction of nitroarenes and A3-coupling reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|