Zhao H, Hu X, Kang H, Feng F, Guo Y, Lu Z. Microwave Construction of NiSb/NiTe Composites on Ni-Foam for High-Performance Supercapacitors.
ACS OMEGA 2024;
9:2597-2605. [PMID:
38250415 PMCID:
PMC10795113 DOI:
10.1021/acsomega.3c07385]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
In this paper, NiSb/NiTe/Ni composites were smoothly developed via the microwave method for supercapacitors. The synthesis of NiSb/NiTe crystals was revealed by X-ray photoelectron spectroscopy and X-ray diffraction. The analytic results of scanning electron microscopy and energy dispersive spectroscopy uncover the microscopic morphology as well as the constituent elements of the composites. Self-supported NiSb/NiTe is a supercapacitor cathode that combines high capacitance with excellent cycling stability. The obtained composite electrode displayed remarkable electrochemical properties, presenting a special capacitance of 1870 F g-1 (1 A g-1) and 81.5% of the original capacity through 30,000 times (10 A g-1) of the charging/discharging process. Further, an asymmetric supercapacitor was prepared employing NiSb/NiTe as a cathode and activated carbon as an anode. NiSb/NiTe//AC exhibited a high energy density of 224.6 uW h cm-2 with a power density of 750 μW cm-2 and provided a favorable cycling stability of 83% after 10,000 cycles.
Collapse