1
|
Liu C, An T, Yuan W, Dai H, Liang X, Yin Z. Direct synthesis of phthalimides via palladium-catalysed double carbonylation of o-dihaloarenes with nitroarenes. Chem Commun (Camb) 2023; 59:12891-12894. [PMID: 37818727 DOI: 10.1039/d3cc04126c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The direct carbonylation of readily available nitro compounds is more attractive and straightforward than the use of traditional amines as nucleophiles. Herein, a practical palladium-catalysed double carbonylation of nitroarenes with o-dihaloarenes has been developed for the construction of various N-aryl phthalimides. Key to the success of this transformation is the use of Mo(CO)6, which acts as both a reducing agent and a solid carbonyl source. A wide range of nitroarenes and o-dihaloarenes as well as o-iodobenzoic acids reacted smoothly to give phthalimides in 27-94% yields.
Collapse
Affiliation(s)
- Chenwei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Tongshun An
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Weiheng Yuan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Huiying Dai
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xiaolan Liang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
2
|
Chen SJ, Zhong WQ, Huang JM. Electrochemical Trifluoromethylation and Sulfonylation of N-Allylamides: Synthesis of Oxazoline Derivatives. J Org Chem 2023; 88:12630-12640. [PMID: 37579302 DOI: 10.1021/acs.joc.3c01310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
We report a new method for the synthesis of trifluoromethylated and sulfonylated oxazolines by electrochemical radical cascade cyclizations of N-allylamides with sodium trifluoromethanesulfinate or sulfonylhydrazines. This protocol provides a green and useful strategy to synthesize trifluoromethylated and sulfonylated oxazolines with a broad substrate scope under ambient conditions.
Collapse
Affiliation(s)
- Shu-Jun Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Wei-Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|
3
|
Liu X, An T, Yin Z, Zhang W. Palladium-Catalyzed Reductive Double Carbonylation of Nitroarenes with Aryl Halides Using Mo(CO) 6 as a Reductant and Carbonyl Source. Chemistry 2023; 29:e202202880. [PMID: 36177713 DOI: 10.1002/chem.202202880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/12/2023]
Abstract
A new palladium-catalyzed reductive double carbonylation of nitroarenes with aryl halides for the synthesis of benzoxazin-4-ones has been reported. The key to success was the use of Mo(CO)6 as a reductant and bench-stable solid carbonyl sources. Various aryl iodides, bromides, and trifluoromethanesulfonates are suitable reaction partners and produce corresponding benzoxazin-4-one derivatives in moderate to good yields. Preliminary mechanistic studies indicate that nitrosoarene was first generated as the key intermediate through nitro reduction. Remarkably, this method avoids the use of toxic CO gas and is further applied to the late-stage modification of estrone.
Collapse
Affiliation(s)
- Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University Henan Cancer Hospital, Zhengzhou, 450008, P. R. China
| | - Tongshun An
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University Henan Cancer Hospital, Zhengzhou, 450008, P. R. China
| |
Collapse
|
4
|
An T, Liu C, Yin Y, Wu XF, Yin Z. Palladium-Catalyzed Denitrogenative Carbonylation of Benzotriazoles with Cr(CO) 6 as the Carbonyl Source. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tongshun An
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Chenwei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yanzhao Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, P. R. China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
5
|
Yin Z, Shi W, Wu XF. Transition-Metal-Catalyzed Carbonylative Multifunctionalization of Alkynes. J Org Chem 2022; 88:4975-4994. [PMID: 35709530 DOI: 10.1021/acs.joc.2c00655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, the construction of new carbon-carbon bonds and value-added structures in an atom- and step economical manner has become a continuous pursuit in the synthetic chemistry community. Since the first transition-metal-catalyzed hydroformylation of ethylene was reported by Otto Roelen in the 1930s, impressive progress has been achieved in the carbonylative functionalization of unsaturated C-C bonds. In contrast to alkenes, the carbonylative functionalization of alkynes offers tremendous potential for the construction of multisubstituted carbonyl-containing derivatives because of their two independently addressable π-systems. This review provides a timely and necessary investigation of transition-metal-catalyzed carbonylative mutifunctionalization of alkynes with the exclusion of carbonylative hydrofunctionalizations. Different transition metals including palladium, rhodium, iridium, ruthenium, iron, copper, etc. were applied to the development of novel carbonylative transformation. Various C-C, C-N, C-O, C-S, C-B, C-Si, and carbon-halogen bonds were formed efficiently and give the corresponding tri- or tetrasubstituted α,β-unsaturated ketones, diesters, and heterocycles.
Collapse
Affiliation(s)
- Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
6
|
Mu B, Xia S, Wu L, Li J, Li Z, Wang Z, Wu J. Radical Esterification of Unactivated Alkenes Using Formate as Carbonyl Source. J Org Chem 2022; 87:4918-4925. [PMID: 35316060 DOI: 10.1021/acs.joc.1c02808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, methyl formate has received considerable attention as an ideal and green C1 building block to synthesize carboxylic esters. However, examples of a one-step route to esters with one-carbon elongation using methyl formate as a source of methoxycarbonyl radical are still rare. Herein, we present peroxide-induced radical carbonylation of N-(2-methylallyl)benzamides with methyl formate as the precursor of methoxycarbonyl radical and RuCl3 as catalyst, affording a series of biologically valuable 4-[(methoxycarbonyl)methyl]-3,4-dihydroisoquinolinones with good tolerance and insensitivity to moisture in one pot under simple and mild conditions.
Collapse
Affiliation(s)
- Bing Mu
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, PR China.,College of Life Sciences, Huzhou University, Huzhou 313000, Zhejiang Province, PR China.,College of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou 450044, PR China
| | - Shiwei Xia
- Division of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, PR China
| | - Linna Wu
- Division of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jingya Li
- Leadmedpharm Co., Ltd., Huzhou 313100, Zhejiang Province, PR China
| | - Zhongxian Li
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, PR China
| | - Zechao Wang
- Division of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, PR China
| | - Junliang Wu
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
7
|
Chen JY, Li HX, Mu SY, Song HY, Wu ZL, Yang TB, Jiang J, He WM. Electrocatalytic three-component synthesis of 4-halopyrazoles with sodium halide as the halogen source. Org Biomol Chem 2022; 20:8501-8505. [DOI: 10.1039/d2ob01612e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The first example of the electrocatalytic multicomponent synthesis of 4-chloro/bromo/iodopyrazoles from hydrazines, acetylacetones and sodium halides under chemical oxidant- and external electrolyte-free conditions has been developed.
Collapse
Affiliation(s)
- Jin-Yang Chen
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong-Xia Li
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Si-Yu Mu
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hai-Yang Song
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zhi-Lin Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Tian-Bao Yang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|