1
|
Liu X, Dong X, Peng Z, Wang C, Wan J, Chen M, Zheng C. Collagenase-functionalized Liposomes Based on Enhancing Penetration into the Extracellular Matrix Augment Therapeutic Effect on Idiopathic Pulmonary Fibrosis. AAPS PharmSciTech 2025; 26:113. [PMID: 40281247 DOI: 10.1208/s12249-025-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
In this study, a quercetin-loaded liposome system modified with collagenase was developed to increase QU penetration in the ECM and improve IPF treatment. Quercetin-loaded long circulation liposome (QU-LP) and quercetin-loaded liposome modified with collagenase type I (QU-CLP) were prepared, followed by characterization of the encapsulation efficiency, particle size, morphology, and in vitro drug release. Their effect on the cytotoxicity of A549 cells was detected by the Cell Counting Kit-8, and the cellular uptake was investigated using cellular fluorescence imaging and flow cytometry. TGF-β1 induced A549 cell model was established to mimic pulmonary fibrosis to explore further the anti-pulmonary fibrosis effect of QU-CLP by CCK8 experiment. QU-CLP significantly improves the solubility and bioavailability of QU by encapsulating it in the internal cavity with a high encapsulation efficiency (EE%) of 92.86 ± 1.03%. Liposomes alleviate the influence of QU on normal A549 cell growth. Enhanced fluorescence intensity was observed in A549 cells treated with coumarin 6-labeled and collagenase-modified nanoliposomes (C6-CLP) after 4 h of incubation on the collagen matrix, confirming that collagenase-loaded liposomes could penetrate the collagen barrier and cells internalized more hydrophobic drug. The mean fluorescence intensity (MFI) of the C6-CLP group was 2.88 times that of the C6-labeled nanoliposomes (C6-LP). Moreover, QU-CLP significantly (**P < 0.01) inhibited the proliferation of A549 cells stimulated by TGF-β1. QU-CLP has excellent potential for delivering QU with enhanced bioavailability, high cellular uptake efficiency, and improved therapeutic efficacy in IPF.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Xiaoling Dong
- Shandong Hubble Kisen Biological Technology Co.,Ltd., Jinan, 250100, China
| | - Zhen Peng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Cuihong Wang
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Jianwei Wan
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Min Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| | - Chunli Zheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Zhang Z, Tang Y, Luo D, Qiu J, Chen L. Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights. APL Bioeng 2025; 9:011502. [PMID: 40094065 PMCID: PMC11910205 DOI: 10.1063/5.0244706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment by promoting tumor growth, immune evasion, and metastasis. Recently, drug delivery systems targeting CAFs have emerged as a promising long-term and effective approach to cancer treatment. Advances in nanotechnology, in particular, have led to the development of nanomedicine delivery systems designed specifically to target CAFs, offering new possibilities for precise and personalized cancer therapies. This article reviews recent progress in drug delivery using nanocarriers that target CAFs. Additionally, we explore the potential of combining multiple therapies, such as chemotherapy and immunotherapy, with nanocarriers to enhance efficacy and overcome drug resistance. Although many preclinical studies show promise, the clinical application of nanomedicine still faces considerable challenges, especially in terms of drug penetration and large-scale production. Therefore, this review aims to provide a fresh perspective on CAF-targeted drug delivery systems and highlight potential future research directions and clinical applications.
Collapse
|
3
|
Xie Y, Zhu M, Bao H, Chen K, Wang S, Dai J, Chen H, Li H, Song Q, Wang X, Yu L, Pei J. Enhanced Antitumor Efficacy and Reduced Toxicity in Colorectal Cancer Using a Novel Multifunctional Rg3- Targeting Nanosystem Encapsulated with Oxaliplatin and Calcium Peroxide. Int J Nanomedicine 2025; 20:1021-1046. [PMID: 39877588 PMCID: PMC11774109 DOI: 10.2147/ijn.s502076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Purpose Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Oxaliplatin (OXA) is currently the primary chemotherapeutic agent for CRC, but its efficacy is limited by the tumor microenvironment (TME). Here, we present a combined approach of chemotherapy and TME modulation for CRC treatment. A multifunctional nanosystem (Rg3-Lip-OXA/CaO2) was established using Ginsenoside Rg3 liposomes targeting glucose transporter 1 overexpressed on the surface of CRC cells to co-deliver OXA and calcium peroxide (CaO2). Methods The CaO2 nanoparticles were synthesized via the CaCl2-H2O2 reaction under alkaline conditions and characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Rg3-Lip-OXA/CaO2 was prepared through a thin-film hydration approach and characterized; additionally, its stability and release behavior were studied. The O2, H2O2, and Ca2+ generation ability of Rg3-Lip-OXA/CaO2 in solution and HCT116 cells were measured. The in vitro cellular uptake was observed via fluorescence microscope and flow cytometry. In vitro cytotoxicity was evaluated using the CCK-8 assay, flow cytometry, and live/dead cell staining. The in vivo targeting effect as well as antitumor efficacy were determined in HCT116 tumor-bearing mice. Finally, the acute toxicity of Rg3-Lip-OXA/CaO2 was investigated in ICR mice to explore its safety. Results The XRD and XPS analyses confirmed the successful synthesis of CaO2 nanoparticles. The Rg3-Lip-OXA/CaO2 exhibited an average particle size of approximately 92.98 nm with good stability and sustained release behavior. In vitro and in vivo studies confirmed optimal targeting by Rg3-Lip and demonstrated that the nanosystem effectively produced O2, H2O2 and Ca2+, resulting in significant cytotoxicity. Additionally, in vivo studies revealed substantial tumor growth suppression and reduced tumor-associated fibroblasts (TAFs) and collagen. Acute toxicity studies indicated that Rg3-Lip-OXA/CaO2 markedly reduced the toxicity of chemotherapeutic drugs. Conclusion This multifunctional nanosystem enhances chemotherapy efficacy and reduces toxicity, offering a promising approach for optimizing CRC treatment and potential clinical application.
Collapse
Affiliation(s)
- Yizhuo Xie
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Ming Zhu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Han Bao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Kejia Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Shanshan Wang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Jingwen Dai
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Hongzhu Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - He Li
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| | - Qi Song
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xinlu Wang
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Liangping Yu
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
4
|
Chen F, Xu Y, Liu X, Dong N, Tian L. TIGIT + CD4 + regulatory T cells enhance PD-1 expression on CD8 + T cells and promote tumor growth in a murine ovarian cancer model. J Ovarian Res 2024; 17:252. [PMID: 39707532 DOI: 10.1186/s13048-024-01578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Immune checkpoint-based immunotherapy has shown limited efficacy in the treatment of ovarian cancer. In recent years, the emergence of immune checkpoint co-targeting therapies, led by the combination targeting of TIGIT and FAK, has shown promise in ovarian cancer treatment. Our preliminary research indicates that TIGIT is predominantly expressed in regulatory T cells during ovarian cancer. However, the therapeutic impact of TIGIT targeting based on regulatory T cells in ovarian cancer remains to be elucidated. We utilized ID8 cells to establish a mouse model of ovarian cancer. Through flow cytometry and co-culture methods, we validated the relationship between the functionality of regulatory T cells and tumor masses, and confirmed the crucial role of TIGIT in immune suppression in ovarian cancer. Furthermore, using Foxp3-diphtheria toxin receptor (DTR) mice, we substantiated that the combined TIGIT antibody treatment, based on targeting regulatory T cells, effectively slowed down the progression of ovarian cancer. Taken together, our results have demonstrated that dual targeting of regulatory T cells and TIGIT effectively retards tumor growth, laying the groundwork for the clinical application of immune checkpoint combination therapies. Future research in ovarian cancer immunotherapy is leaning towards a strategy that combines multiple targets, and specific cell-type immunotherapies.
Collapse
Affiliation(s)
- Fengzhen Chen
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Yanying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiangyu Liu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Na Dong
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lei Tian
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Nankai University, Tianjin No. 4 Hospital, Tianjin, 300222, China
| |
Collapse
|
5
|
Lo Buglio G, Lo Cicero A, Campora S, Ghersi G. The Multifaced Role of Collagen in Cancer Development and Progression. Int J Mol Sci 2024; 25:13523. [PMID: 39769286 PMCID: PMC11678882 DOI: 10.3390/ijms252413523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/05/2025] Open
Abstract
Collagen is a crucial protein in the extracellular matrix (ECM) essential for preserving tissue architecture and supporting crucial cellular functions like proliferation and differentiation. There are twenty-eight identified types of collagen, which are further divided into different subgroups. This protein plays a critical role in regulating tissue homeostasis. However, in solid tumors, the balance can be disrupted, due to an abundance of collagen in the tumor microenvironment, which significantly affects tumor growth, cell invasion, and metastasis. It is important to investigate the specific types of collagens in cancer ECM and their distinct roles in tumor progression to comprehend their unique contribution to tumor behavior. The diverse pathophysiological functions of different collagen types in cancers illustrate collagen's dual roles, offering potential therapeutic options and serving as prognostic markers.
Collapse
Affiliation(s)
- Gabriele Lo Buglio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Alessandra Lo Cicero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
- Abiel srl, 90128 Palermo, Italy
| |
Collapse
|
6
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
7
|
Damus BJ, Amaeze NR, Yoo E, Kaur G. Ethoxy Acetalated Dextran-Based Biomaterials for Therapeutic Applications. Polymers (Basel) 2024; 16:2756. [PMID: 39408467 PMCID: PMC11479160 DOI: 10.3390/polym16192756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
A novel class of pH-responsive polymers, acetalated dextran, has emerged in the field of biomaterials. These versatile materials are derived from dextran through a simple acetalation reaction, allowing for the creation of polymers with a tunable release profile which allows the controlled release of encapsulated therapeutics in response to acidic environments. Despite their recent introduction, acetalated dextran has rapidly garnered significant interest due to its potential for various therapeutic applications. This review delves specifically into the recent advancements of ethoxy acetalated dextran or Ace-DEX, a particular acetalated dextran with a distinct advantage: its degradation products (acetone and ethanol) are less toxic compared to other variants that produce methanol. The focus of this review is the diverse range of biomedical applications currently being explored for Ace-DEX-based scaffolds. Finally, this review concludes by addressing the existing challenges associated with Ace-DEX and outlining potential future research directions within this promising field.
Collapse
Affiliation(s)
- Branden Joshua Damus
- Department of Microbiology and Immunology, University of Miami, Coral Gables, FL 33146, USA
| | - Nzube Ruth Amaeze
- Department of Chemistry, College of Arts and Sciences, Howard University, Washington, DC 20059, USA
| | - Eunsoo Yoo
- Department of Chemical, Biological, & Bioengineering, North Caroline Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Gagandeep Kaur
- Department of Chemistry, College of Arts and Sciences, Howard University, Washington, DC 20059, USA
| |
Collapse
|
8
|
Yu B, Wang W, Zhang Y, Sun Y, Li C, Liu Q, Zhen X, Jiang X, Wu W. Enhancing the tumor penetration of multiarm polymers by collagenase modification. Biomater Sci 2024; 12:2302-2311. [PMID: 38497169 DOI: 10.1039/d3bm02123h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Tumor penetration is a critical determinant of the therapy efficacy of nanomedicines. However, the dense extracellular matrix (ECM) in tumors significantly hampers the deep penetration of nanomedicines, resulting in large drug-untouchable areas and unsatisfactory therapy efficacy. Herein, we synthesized a third-generation PAMAM-cored multiarm copolymer and modified the polymer with collagenase to enhance its tumor penetration. Each arm of the copolymer was a diblock copolymer of poly(glutamic acid)-b-poly(carboxybetaine), in which the polyglutamic acid block with abundant side groups was used to link the anticancer agent doxorubicin through the pH-sensitive acylhydrazone linkage, and the zwitterionic poly(carboxybetaine) block provided desired water solubility and anti-biofouling capability. The collagenase was conjugated to the ends of the arms via the thiol-maleimide reaction. We demonstrated that the polymer-bound collagenase could effectively catalyze the degradation of the collagen in the tumor ECM, and consequently augmented the tumor penetration and antitumor efficacy of the drug-loaded polymers.
Collapse
Affiliation(s)
- Bo Yu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Weijie Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Yongmin Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Ying Sun
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Cheng Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, State Key Laboratory of Analytical Chemistry for Life Science, and College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China.
| |
Collapse
|
9
|
Zhou Z, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Zhang Y, Xiao P, Zhong X, Yan W. Effects of Nanomaterials on Synthesis and Degradation of the Extracellular Matrix. ACS NANO 2024; 18:7688-7710. [PMID: 38436232 DOI: 10.1021/acsnano.3c09954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.
Collapse
Affiliation(s)
- Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510260, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Yang
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Dong Y, Zheng Y, Zhang J, Lv X, Hong H, Zheng Y, Wang R, Gong J. mPEG-PDLLA polymeric micelles loading a novel pyridazinone derivative IMB5036 for improving anti-tumor activity in hepatocellular carcinoma. J Drug Deliv Sci Technol 2023; 90:105101. [DOI: 10.1016/j.jddst.2023.105101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
|
11
|
Massaro M, Ghersi G, de Melo Barbosa R, Campora S, Rigogliuso S, Sànchez-Espejo R, Viseras-Iborra C, Riela S. Nanoformulations based on collagenases loaded into halloysite/Veegum® clay minerals for potential pharmaceutical applications. Colloids Surf B Biointerfaces 2023; 230:113511. [PMID: 37597494 DOI: 10.1016/j.colsurfb.2023.113511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
The design and development of nanomaterials capable of penetrate cancer cells is fundamental when anticancer therapy is involved. The use of collagenase (Col) is useful since this enzyme can degrade collagen, mainly present in the tumor extracellular matrix. However, its use is often limited since collagenase suffers from inactivation and short half-life. Use of recombinant ultrapure collagenase or carrier systems for their delivery are among the strategies adopted to increase the enzyme stability. Herein, based on the more stability showed by recombinant enzymes and the possibility to use them in anticancer therapy, we propose a novel strategy to further increase their stability by using halloysite nanotubes (HNTs) as carrier. ColG and ColH were supramolecularly loaded onto HNTs and used as fillers for Veegum gels. The systems could be used for potential local administration of collagenases for solid tumor treatment. All techniques adopted for characterization showed that halloysite interacts with collagenases in different ways depending with the Col considered. Furthermore, the hydrogels showed a very slow release of the collagenases within 24 h. Finally, biological assays were performed by studying the digestion of a type-I collagen matrix highlighting that once released the Col still possessed some activity. Thus we developed carrier systems that could further increase the high recombinant collagenases stability, preventing their inactivation in future in vivo applications for potential local tumor treatment.
Collapse
Affiliation(s)
- Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy
| | - Giulio Ghersi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy.
| | - Raquel de Melo Barbosa
- University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain
| | - Simona Campora
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy
| | - Salvatrice Rigogliuso
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy
| | - Rita Sànchez-Espejo
- University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain
| | - César Viseras-Iborra
- University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain; Andalusian Institute of Earth Sciences, CSIC-UGR, 18100 Armilla, Granada, Spain
| | - Serena Riela
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy.
| |
Collapse
|
12
|
Xie Y, Ren Z, Chen H, Tang H, Zhu M, Lv Z, Bao H, Zhang Y, Liu R, Shen Y, Zheng Y, Miao D, Guo X, Chen H, Wang S, Pei J. A novel estrogen-targeted PEGylated liposome co-delivery oxaliplatin and paclitaxel for the treatment of ovarian cancer. Biomed Pharmacother 2023; 160:114304. [PMID: 36724638 DOI: 10.1016/j.biopha.2023.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Ovarian cancer is the second cause of death among gynecological malignancies. In this study, we designed a novel estrogen-targeted PEGylated liposome loaded with oxaliplatin and paclitaxel (ES-SSL-OXA/PTX) which could target estrogen receptor (ER) highly expressed on the surface of SKOV-3 cells to enhance therapeutic efficacy and reduce the side effects for SKOV-3 tumor therapy. ES-SSL-OXA/PTX was prepared by thin film hydration method and exhibited a uniform spherical morphology. Encapsulation efficiency (EE) were determined by HPLC method with the results of 44.10% for OXA and 65.85% for PTX. The mean particle size and polydispersity index (PDI) were 168.46 nm and 0.145, respectively. In vivo and in vitro targeting study confirmed that ES-SSL-OXA/PTX has optimum specific targeting ability. Meanwhile, In vitro and in vivo antitumor results of ES-SSL-OXA/PTX exhibited a superior antiproliferative effect on SKOV-3 cells and a stronger anti-tumor efficacy with the tumor inhibition rate of 85.24%. The pharmacokinetics results of ES-SSL-OXA/PTX showed a prolonged half-life time and a slowed clearance rate. The preliminary safety study of acute toxicity and long-term toxicity demonstrated ES-SSL-OXA/PTX exhibited a reduced toxicity profile. Based on the above results, ES-SSL-OXA/PTX could be a promising novel formulation for the treatment of ovarian cancer in future clinic.
Collapse
Affiliation(s)
- Yizhuo Xie
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhihui Ren
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongyu Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Huan Tang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Ming Zhu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhe Lv
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Han Bao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yan Zhang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Rui Liu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yujia Shen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yucui Zheng
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dongfanghui Miao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xin Guo
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongli Chen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shanshan Wang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
13
|
Improved targeting delivery of WED-load immunoliposomes modified with SP-A mAb for the treatment of pulmonary fibrosis. Colloids Surf B Biointerfaces 2023; 224:113237. [PMID: 36871414 DOI: 10.1016/j.colsurfb.2023.113237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
The epithelial-mesenchymal transition (EMT) of type Ⅱ alveolar epithelial cells (AECS Ⅱ) induced by transforming growth factor (TGF-β1) is a primary pathogenesis of pulmonary fibrosis (PF). To augment the therapeutic potency of wedelolactone (WED) for PF, herein, pulmonary surfactant protein A (SP-A) specifically expressed on AECS Ⅱ was selected as the targeted receptor. Immunoliposomes modified with SP-A monoclonal antibody (SP-A mAb), novel anti-PF drug delivery systems, were developed and investigated in vivo and in vitro. In vivo fluorescence imaging technique was performed to evaluate the pulmonary-targeting effects of immunoliposomes. The result showed that immunoliposomes accumulated more in the lung, compared with non-modified nanoliposomes. Fluorescence detection methods and flow cytometry were used to investigate the function of SP-A mAb and the cellular uptake efficiency of WED-ILP in vitro. SP-A mAb enabled the immunoliposomes to specifically target the A549 cells and increased uptake more effectively. The mean fluorescence intensity (MFI) of cells treated with the targeted immunoliposomes was about 1.4-fold higher than that of cells treated with regular nanoliposomes. The cytotoxicity of nanoliposomes was assessed by the MTT assay, which demonstrated that blank nanoliposomes have no significant effect on A549 cell proliferation even at the SPC concentration of 1000 µg/mL. Additionally, in vitro pulmonary fibrosis model was established to further investigate the anti-pulmonary fibrosis effect of WED-ILP. WED-ILP significantly (**P < 0.01) inhibited the proliferation of A549 cells stimulated by TGF-β1 indicating that WED-ILP has great potential for the clinical treatment of PF.
Collapse
|
14
|
Kim KS, Kim SH, Im CN, Na K, Lee MY, Park JK, Kuh HJ. Effect of paclitaxel priming on doxorubicin penetration in a multicellular layer model of human colorectal cancer cells. Biochem Biophys Res Commun 2023; 647:30-36. [PMID: 36709670 DOI: 10.1016/j.bbrc.2023.01.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Tumor priming is considered a promising strategy for improving drug distribution in malignant tissues. Multicellular layers (MCLs) of human cancer cells are potentially useful models for evaluating tumor-priming agents. We evaluated the priming effects of paclitaxel (PTX) on doxorubicin (DOX) penetration using MCLs of the human colorectal cancer cell lines including DLD-1, HCT-116, and HT-29. The penetration of DOX treated at 50 μM for 3 h was highly limited in all three MCLs. The penetration of the priming agent PTX into MCLs was determined using rhodamine-labeled PTX and appeared to be cell line-dependent: full penetration was observed in HCT-116 and HT-29 MCLs, whereas only limited penetration occurred in DLD-1 MCLs. PTX pretreatment at 20 μM for 24 or 48 h induced a tumor-priming effect in DOX distribution, with a 3 to 5.6-fold-increase in HCT-116 and HT-29 MCLs but a less than two-fold increase in DLD-1 MCLs. PTX treatment decreased fibronectin expression in HCT-116 and HT-29 MCLs but not in DLD-1, suggesting that the prominent priming effect of PTX in HCT-116 and HT-29 MCLs may be associated with the downregulation of fibronectin expression. Our study demonstrated that MCLs of human cancer cells are a useful model not only for the study of drug penetration into tumor tissues but also for screening and evaluating tumor-priming agents.
Collapse
Affiliation(s)
- Kwang-Seock Kim
- Department of Biomedicine and Health Science, Graduate School, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Si Hyoung Kim
- Graduate Program for Future Medical Research Leaders, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Chang-Nim Im
- Graduate Program for Future Medical Research Leaders, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Kun Na
- Department of Biomedical-Chemical Engineering (BMCE), The Catholic University of Korea, Gyeonggi-do, 420-743, Republic of Korea
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm Street, Denton, TX, 76207, United States
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Hyo-Jeong Kuh
- Department of Biomedicine and Health Science, Graduate School, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea; Graduate Program for Future Medical Research Leaders, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137-701, Republic of Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
15
|
Veiga N, Diesendruck Y, Peer D. Targeted nanomedicine: Lessons learned and future directions. J Control Release 2023; 355:446-457. [PMID: 36773958 DOI: 10.1016/j.jconrel.2023.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
Designing a therapeutic modality that will reach a certain organ, tissue, or cell type is crucial for both the therapeutic efficiency and to limit off-target adverse effects. Nanoparticles carrying various drugs, such as nucleic acids, small molecules and proteins, are promoting modalities to this end. Beyond the need to identify a target for a specific indication, an adequate design has to address the multiple biological barriers, such as systemic barriers, dilution and unspecific distribution, tissue penetration and intracellular trafficking. The field of targeted delivery has developed rapidly in recent years, with tremendous progress made in understating the biological barriers, and new technologies to functionalize nanoparticles with targeting moieties for an accurate, specific and highly selective delivery. Implementing new approaches like multi-functionalized nanocarriers and machine learning models will advance the field for designing safe, cell -specific nanoparticle delivery systems. Here, we will critically review the current progress in the field and suggest novel strategies to improve cell specific delivery of therapeutic payloads.
Collapse
Affiliation(s)
- Nuphar Veiga
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium
| | - Yael Diesendruck
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
16
|
Yang XY, Zhang JG, Zhou QM, Yu JN, Lu YF, Wang XJ, Zhou JP, Ding XF, Du YZ, Yu RS. Extracellular matrix modulating enzyme functionalized biomimetic Au nanoplatform-mediated enhanced tumor penetration and synergistic antitumor therapy for pancreatic cancer. J Nanobiotechnology 2022; 20:524. [PMID: 36496411 PMCID: PMC9741808 DOI: 10.1186/s12951-022-01738-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Excessive extracellular matrix (ECM) deposition in pancreatic ductal adenocarcinoma (PDAC) severely limits therapeutic drug penetration into tumors and is associated with poor prognosis. Collagen is the most abundant matrix protein in the tumor ECM, which is the main obstacle that severely hinders the diffusion of chemotherapeutic drugs or nanomedicines. METHODS We designed a collagenase-functionalized biomimetic drug-loaded Au nanoplatform that combined ECM degradation, active targeting, immune evasion, near-infrared (NIR) light-triggered drug release, and synergistic antitumor therapy and diagnosis into one nanoplatform. PDAC tumor cell membranes were extracted and coated onto doxorubicin (Dox)-loaded Au nanocages, and then collagenase was added to functionalize the cell membrane through lipid insertion. We evaluated the physicochemical properties, in vitro and in vivo targeting, penetration and therapeutic efficacy of the nanoplatform. RESULTS Upon intravenous injection, this nanoplatform efficiently targeted the tumor through the homologous targeting properties of the coated cell membrane. During penetration into the tumor tissue, the dense ECM in the PDAC tissues was gradually degraded by collagenase, leading to a looser ECM structure and deep penetration within the tumor parenchyma. Under NIR irradiation, both photothermal and photodynamic effects were produced and the encapsulated chemotherapeutic drugs were released effectively, exerting a strong synergistic antitumor effect. Moreover, this nanoplatform has X-ray attenuation properties that could serve to guide and monitor treatment by CT imaging. CONCLUSION This work presented a unique and facile yet effective strategy to modulate ECM components in PDAC, enhance tumor penetration and tumor-killing effects and provide therapeutic guidance and monitoring.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jin-Guo Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Qiao-Mei Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jie-Ni Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Yuan-Fei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xiao-Jie Wang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jia-Ping Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xin-Fa Ding
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Luo J, Cao J, Ma G, Wang X, Sun Y, Zhang C, Shi Z, Zeng Y, Zhang T, Huang P. Collagenase-Loaded H-TiO 2 Nanoparticles Enhance Ultrasound Imaging-Guided Sonodynamic Therapy in a Pancreatic Carcinoma Xenograft Model via Digesting Stromal Barriers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40535-40545. [PMID: 36043358 DOI: 10.1021/acsami.2c08951] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sonodynamic therapy (SDT), a noninvasive therapy that relies on sonosensitizers and generates reactive oxygen species (ROS), has attracted considerable attention in the treatment of pancreatic cancer. However, being surrounded by dense stromal barriers, pancreatic cancer exhibits high interstitial fluid pressure (IFP) and hypoxia in the tumor microenvironment (TME), resulting in poor SDT efficacy. Collagenase-loaded hollow TiO2 (Col-H-TiO2) nanoparticles (NPs) capable of degrading stromal barriers and producing sufficient ROS production were synthesized in this study. After administration of NPs in the patient-derived xenograft (PDX) model, ultrasonic irradiation-released collagenase degraded tumor matrix fibers, decreased intratumoral IFP, and enhanced the penetration and retention of NPs within tumor tissues. Moreover, the NPs accumulated within the tumor not only generate abundant ROS under the influence of ultrasound irradiation but also improve intratumoral ultrasound signal, providing ultrasonic imaging-guided highly effective SDT for pancreatic cancer. In conclusion, this research improves the SDT technique and enhances the visualization of pancreatic cancer by remodeling the TME and is a promising strategy for further clinical applications.
Collapse
Affiliation(s)
- Jiali Luo
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Jing Cao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Guangrong Ma
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Xue Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Yu Sun
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Cong Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, P. R. China
| |
Collapse
|