1
|
Zhan G, Koek B, Yuan Y, Liu Y, Mishra V, Lenzi V, Strutyński K, Li C, Zhang R, Zhou X, Choi HS, Cai ZF, Almarza J, Mali KS, Mateo-Alonso A, Franco MM, Zhu Y, De Feyter S, Loh KP. Moiré two-dimensional covalent organic framework superlattices. Nat Chem 2025; 17:518-524. [PMID: 39979413 PMCID: PMC12095054 DOI: 10.1038/s41557-025-01748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
The on-surface synthesis of two-dimensional (2D) polymers from monomers represents a useful strategy for designing lattice, orbital and spin symmetries. Like other 2D materials, the ordered stacking of 2D polymers into bilayers may allow developing unique optoelectronic, charge transport and magnetic properties not found in the individual layers. However, controlling layer stacking of 2D polymers remains challenging. Here we describe a method for synthesizing 2D polymer bilayers or bilayer 2D covalent organic frameworks at the liquid-substrate interface through the direct condensation of monomers. More importantly, we also show how factors such as monomer structure and solvent mixture influence the bilayer stacking modes and how, under certain conditions, large-area moiré superlattices emerge from the twisted bilayer stacking. This finding offers new opportunities for the design of bilayer stacked framework materials with tunable electronic and structural properties.
Collapse
Affiliation(s)
- Gaolei Zhan
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- i-Lab, Nano-X Vacuum Interconnected Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, P. R. China.
| | - Brecht Koek
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | - Yijia Yuan
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Yikuan Liu
- Center for Electron Microscopy, Zhejiang Key Laboratory of Surface and Interface Science and Engineering for Catalysts, China-Saudi Arabia Joint Laboratory on Microscopic Structural Engineering of Advanced Materials and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Vipin Mishra
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | - Veniero Lenzi
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Karol Strutyński
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Chunxiao Li
- i-Lab, Nano-X Vacuum Interconnected Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, P. R. China
| | - Rongrong Zhang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xin Zhou
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Hwa Seob Choi
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Zhen-Feng Cai
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Joaquín Almarza
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| | - Kunal S Mali
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Manuel Melle Franco
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Yihan Zhu
- Center for Electron Microscopy, Zhejiang Key Laboratory of Surface and Interface Science and Engineering for Catalysts, China-Saudi Arabia Joint Laboratory on Microscopic Structural Engineering of Advanced Materials and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium.
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Temmerman W, Goeminne R, Rawat KS, Van Speybroeck V. Computational Modeling of Reticular Materials: The Past, the Present, and the Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412005. [PMID: 39723710 DOI: 10.1002/adma.202412005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Reticular materials rely on a unique building concept where inorganic and organic building units are stitched together giving access to an almost limitless number of structured ordered porous materials. Given the versatility of chemical elements, underlying nets, and topologies, reticular materials provide a unique platform to design materials for timely technological applications. Reticular materials have now found their way in important societal applications, like carbon capture to address climate change, water harvesting to extract atmospheric moisture in arid environments, and clean energy applications. Combining predictions from computational materials chemistry with advanced experimental characterization and synthesis procedures unlocks a design strategy to synthesize new materials with the desired properties and functions. Within this review, the current status of modeling reticular materials is addressed and supplemented with topical examples highlighting the necessity of advanced molecular modeling to design materials for technological applications. This review is structured as a templated molecular modeling study starting from the molecular structure of a realistic material towards the prediction of properties and functions of the materials. At the end, the authors provide their perspective on the past, present of future in modeling reticular materials and formulate open challenges to inspire future model and method developments.
Collapse
Affiliation(s)
- Wim Temmerman
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Ruben Goeminne
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Kuber Singh Rawat
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| |
Collapse
|
3
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
4
|
Zojer E. Electrostatically Designing Materials and Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406178. [PMID: 39194368 DOI: 10.1002/adma.202406178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Indexed: 08/29/2024]
Abstract
Collective electrostatic effects arise from the superposition of electrostatic potentials of periodically arranged (di)polar entities and are known to crucially impact the electronic structures of hybrid interfaces. Here, it is discussed, how they can be used outside the beaten paths of materials design for realizing systems with advanced and sometimes unprecedented properties. The versatility of the approach is demonstrated by applying electrostatic design not only to metal-organic interfaces and adsorbed (complex) monolayers, but also to inter-layer interfaces in van der Waals heterostructures, to polar metal-organic frameworks (MOFs), and to the cylindrical pores of covalent organic frameworks (COFs). The presented design ideas are straightforward to simulate and especially for metal-organic interfaces also their experimental implementation has been amply demonstrated. For van der Waals heterostructures, the needed building blocks are available, while the required assembly approaches are just being developed. Conversely, for MOFs the necessary growth techniques exist, but more work on advanced linker molecules is required. Finally, COF structures exist that contain pores decorated with polar groups, but the electrostatic impact of these groups has been largely ignored so far. All this suggest that the dawn of the age of electrostatic design is currently experienced with potential breakthroughs lying ahead.
Collapse
Affiliation(s)
- Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Petersgasse 16, Graz, A-8010, Austria
| |
Collapse
|
5
|
Sajid H. Effect of interlayer slipping on the geometric, thermal and adsorption properties of 2D covalent organic frameworks: a comprehensive review based on computational modelling studies. Phys Chem Chem Phys 2024; 26:8577-8603. [PMID: 38421236 DOI: 10.1039/d4cp00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Two-dimensional covalent organic frameworks (2D-COFs) are a class of crystalline porous organic polymers, consisting of 2D-planar sheets stacked together perpendicularly via noncovalent forces. Since their discovery, 2D-COFs have attracted extensive attention for optoelectronic and adsorption applications. Owing to the layer stacking nature of 2D COFs, various new slipped structures that are energetically favourable can be designed. These interlayer slipped structures are actively responsible for tuning (mostly enhancing) the optoelectronic properties, thermal properties, and mechanical strength of 2D COFs. This review summarizes the effect of interlayer slipping on the energetic stability, electronic behaviour and gas adsorption properties of 2D layered COFs, which is explained through computational modelling simulations. Since computational modelling offers a deep insight into electronic behaviour at the atomic scale, which is potentially impossible through experimental techniques, the introduction and role of computational techniques in such studies have also been described.
Collapse
Affiliation(s)
- Hasnain Sajid
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
6
|
Borgmans S, Rogge SMJ, Vanduyfhuys L, Van Speybroeck V. OGRe: Optimal Grid Refinement Protocol for Accurate Free Energy Surfaces and Its Application in Proton Hopping in Zeolites and 2D COF Stacking. J Chem Theory Comput 2023; 19:9032-9048. [PMID: 38084847 PMCID: PMC10753773 DOI: 10.1021/acs.jctc.3c01028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/27/2023]
Abstract
While free energy surfaces are the crux of our understanding of many chemical and biological processes, their accuracy is generally unknown. Moreover, many developments to improve their accuracy are often complicated, limiting their general use. Luckily, several tools and guidelines are already in place to identify these shortcomings, but they are typically lacking in flexibility or fail to systematically determine how to improve the accuracy of the free energy calculation. To overcome these limitations, this work introduces OGRe, a Python package for optimal grid refinement in an arbitrary number of dimensions. OGRe is based on three metrics that gauge the confinement, consistency, and overlap of each simulation in a series of umbrella sampling (US) simulations, an enhanced sampling technique ubiquitously adopted to construct free energy surfaces for hindered processes. As these three metrics are fundamentally linked to the accuracy of the weighted histogram analysis method adopted to generate free energy surfaces from US simulations, they facilitate the systematic construction of accurate free energy profiles, where each metric is driven by a specific umbrella parameter. This allows for the derivation of a consistent and optimal collection of umbrellas for each simulation, largely independent of the initial values, thereby dramatically increasing the ease-of-use toward accurate free energy surfaces. As such, OGRe is particularly suited to determine complex free energy surfaces with large activation barriers and shallow minima, which underpin many physical and chemical transformations and hence to further our fundamental understanding of these processes.
Collapse
Affiliation(s)
- Sander Borgmans
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| | - Sven M. J. Rogge
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| |
Collapse
|
7
|
Pelkowski CE, Natraj A, Malliakas CD, Burke DW, Bardot MI, Wang Z, Li H, Dichtel WR. Tuning Crystallinity and Stacking of Two-Dimensional Covalent Organic Frameworks through Side-Chain Interactions. J Am Chem Soc 2023; 145:21798-21806. [PMID: 37773640 DOI: 10.1021/jacs.3c03868] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) form as layered 2D polymers whose sheets stack through high-surface-area, noncovalent interactions that can give rise to different interlayer arrangements. Manipulating the stacking of 2D COFs is crucial since it dictates the effective size and shape of the pores as well as the specific interactions between functional aromatic systems in adjacent layers, both of which will strongly influence the emergent properties of 2D COFs. However, principles for tuning layer stacking are not yet well understood, and many 2D COFs are disordered in the stacking direction. Here, we investigate effects of pendant chain length through a series of 2D imine-linked COFs functionalized with n-alkyloxy chains varying in length from one carbon (C1 COF) to 11 carbons (C11 COF). This series reveals previously unrecognized and unanticipated trends in both the stacking geometry and crystallinity. C1 COF adopts an averaged eclipsed geometry with no apparent offset between layers. In contrast, all subsequent chain lengths lead to some degree of unidirectional slip stacking. As pendant chain length is increased, trends show average layer offset increasing to a maximum of 2.07 Å in C5 COF and then decreasing as chain length is extended through C11 COF. Counterintuitively, shorter chains (C2-C4) give rise to lower yields of weakly crystalline materials, while longer chains (C6-C9) produce greater yields of highly crystalline materials, as confirmed by powder X-ray diffraction and scanning electron microscopy. Molecular dynamics simulations corroborate these observations, suggesting that long alkyl chains can interact favorably to promote the self-assembly of sheets. In situ proton NMR spectroscopy provides insights into the reaction equilibrium as well as the relationship between low COF yields and low crystallinity. These results provide fundamental insights into principles of supramolecular assembly in 2D COFs, demonstrating an opportunity for harnessing favorable side-chain interactions to produce highly crystalline materials.
Collapse
Affiliation(s)
- Chloe E Pelkowski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anusree Natraj
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christos D Malliakas
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David W Burke
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Madison I Bardot
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zixiao Wang
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Jiading, Shanghai 201800, China
| | - Haoyuan Li
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Jiading, Shanghai 201800, China
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Calcinelli F, Jeindl A, Hörmann L, Ghan S, Oberhofer H, Hofmann OT. Interfacial Charge Transfer Influences Thin-Film Polymorphism. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:2868-2876. [PMID: 35178141 PMCID: PMC8842301 DOI: 10.1021/acs.jpcc.1c09986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Indexed: 05/05/2023]
Abstract
The structure and chemical composition are the key parameters influencing the properties of organic thin films deposited on inorganic substrates. Such films often display structures that substantially differ from the bulk, and the substrate has a relevant influence on their polymorphism. In this work, we illuminate the role of the substrate by studying its influence on para-benzoquinone on two different substrates, Ag(111) and graphene. We employ a combination of first-principles calculations and machine learning to identify the energetically most favorable structures on both substrates and study their electronic properties. Our results indicate that for the first layer, similar structures are favorable for both substrates. For the second layer, we find two significantly different structures. Interestingly, graphene favors the one with less, while Ag favors the one with more electronic coupling. We explain this switch in stability as an effect of the different charge transfer on the two substrates.
Collapse
Affiliation(s)
- Fabio Calcinelli
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| | - Andreas Jeindl
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| | - Lukas Hörmann
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| | - Simiam Ghan
- Chair
for Theoretical Chemistry and Catalysis Research Center, Technical University Munich, 85748 Garching, Germany
| | - Harald Oberhofer
- Chair
for Theoretical Chemistry and Catalysis Research Center, Technical University Munich, 85748 Garching, Germany
- Chair
for Theoretical Physics VII and Bavarian Center for Battery Technology
(BayBatt), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Oliver T. Hofmann
- Institute
of Solid State Physics, Graz University
of Technology, 8010 Graz, Austria
| |
Collapse
|
9
|
Zojer E, Winkler C. Maximizing the Carrier Mobilities of Metal-Organic Frameworks Comprising Stacked Pentacene Units. J Phys Chem Lett 2021; 12:7002-7009. [PMID: 34283912 PMCID: PMC8397338 DOI: 10.1021/acs.jpclett.1c01892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Charge transport properties of metal-organic frameworks (MOFs) are of distinct interest for (opto)electronic applications. In contrast to the situation in molecular crystals, MOFs allow an extrinsic control of the relative arrangement of π-conjugated entities through the framework architecture. This suggests that MOFs should enable materials with particularly high through-space charge carrier mobilities. Such materials, however, do not yet exist, despite the synthesis of MOFs with, for example, seemingly ideally packed stacks of pentacene-bearing linkers. Their rather low mobilities have been attributed to dynamic disorder effects. Using dispersion-corrected density functional theory calculations, we show that this is only part of the problem and that targeted network design involving comparably easy-to-implement structural modifications have the potential to massively boost charge transport. For the pentacene stacks, this is related to the a priori counterintuitive observation that the electronic coupling between neighboring units can be strongly increased by increasing the stacking distance.
Collapse
|