1
|
Eftaiha AF, Suryabrahmam B, Morris NB, Qaroush AK, Assaf KI, Foudeh DM, Hammad SB, Ashkar R. Modification of Liposomal Properties by an Engineered Gemini Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3042-3052. [PMID: 39862190 PMCID: PMC11823631 DOI: 10.1021/acs.langmuir.4c03043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/22/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025]
Abstract
Lipid membranes form the primary structure of cell membranes and serve as configurable interfaces across numerous applications including biosensing technologies, antifungal treatments, and therapeutic platforms. Therefore, the modification of lipid membranes by additives has important consequences in both biological processes and practical applications. In this study, we investigated a nicotinic-acid-based gemini surfactant (NAGS) as a chemically tunable molecular additive for modulating the structure and phase behavior of liposomal membranes. We specifically focused on NAGS with hydrocarbon chains that mirror those of lipid molecules. By introducing NAGS to phosphatidylcholine membranes with lipids of identical and varied chain lengths or degrees of unsaturation, we demonstrated the effects of headgroup interactions and chain mismatch between NAGS and membrane lipids. Using small-angle X-ray scattering, we showed that regardless of chain compatibility or mismatch, NAGS reduced the thickness and packing density of fluid lipid membranes. Further observations by fluorescence microscopy revealed the emergence of ordered-disordered domains upon cooling to room temperature. The observed phases were quite distinct from those of lipid membranes with analogous chain compositions, emphasizing the importance of NAGS headgroup chemistry in mediating domain formation and stabilization. These findings open new possibilities for exploiting NAGS in tuning the structure and organization of liposomal membranes with potential applications in drug delivery and biomedical imaging.
Collapse
Affiliation(s)
- Ala’a F. Eftaiha
- Department
of Chemistry, Faculty of Science, The Hashemite
University, Zarqa 13133, Jordan
- Department
of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center
for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Buti Suryabrahmam
- Department
of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center
for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas B. Morris
- Department
of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center
for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Abdussalam K. Qaroush
- Department
of Chemistry, Faculty of Science, The University
of Jordan, Amman 11942, Jordan
| | - Khaleel I. Assaf
- Department
of Chemistry, Faculty of Science, Al-Balqa
Applied University, Al-Salt 19117, Jordan
| | - Dina M. Foudeh
- Department
of Chemistry, Faculty of Science, The University
of Jordan, Amman 11942, Jordan
| | - Suhad B. Hammad
- Department
of Chemistry, Faculty of Science, The University
of Jordan, Amman 11942, Jordan
| | - Rana Ashkar
- Department
of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center
for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecular
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Chen J, Hu S, Sun M, Shi J, Zhang H, Yu H, Yang Z. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur J Pharm Sci 2024; 193:106688. [PMID: 38171420 DOI: 10.1016/j.ejps.2023.106688] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/23/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
The limitations of conventional cancer treatment are driving the emergence and development of nanomedicines. Research in liposomal nanomedicine for cancer therapy is rapidly increasing, opening up new horizons for cancer treatment. Liposomal nanomedicine, which focuses on targeted drug delivery to improve the therapeutic effect of cancer while reducing damage to normal tissues and cells, has great potential in the field of cancer therapy. This review aims to clarify the advantages of liposomal delivery systems in cancer therapy. We describe the recent understanding of spatiotemporal fate of liposomes in the organism after different routes of drug administration. Meanwhile, various types of liposome-based drug delivery systems that exert their respective advantages in cancer therapy while reducing side effects were discussed. Moreover, the combination of liposomal agents with other therapies (such as photodynamic therapy and photothermal therapy) has demonstrated enhanced tumor-targeting efficiency and therapeutic efficacy. Finally, the opportunities and challenges faced by the field of liposome nanoformulations for entering the clinical treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Siyuan Hu
- School of Life Sciences, Jilin University, Changchun, China
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Jianan Shi
- School of Life Sciences, Jilin University, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Hongmei Yu
- China-Japan Union Hospital, Jilin University, Changchun, China.
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Mateos-Maroto A, Gai M, Brückner M, da Costa Marques R, Harley I, Simon J, Mailänder V, Morsbach S, Landfester K. Systematic modulation of the lipid composition enables the tuning of liposome cellular uptake. Acta Biomater 2023; 158:463-474. [PMID: 36599401 DOI: 10.1016/j.actbio.2022.12.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
As liposomes have been widely explored as drug delivery carriers over the past decades, they are one of the most promising platforms due to their biocompatibility and versatility for surface functionalization. However, to improve the specific design of liposomes for future biomedical applications such as nanovaccines, it is necessary to understand how these systems interact with cell membranes, as most of their potential applications require them to be internalized by cells. Even though several investigations on the cellular uptake of liposomes were conducted, the effect of the liposome membrane properties on internalization in different cell lines remains unclear. Here, we demonstrate how the cellular uptake behavior of liposomes can be driven towards preferential interaction with dendritic cells (DC2.4) as compared to macrophages (RAW264.7) by tuning the lipid composition with varied molar ratios of the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Cellular internalization efficiency was analyzed by flow cytometry, as well as liposome-cell membrane co-localization by confocal laser scanning microscopy. The corresponding proteomic analysis of the protein corona was performed in order to unravel the possible effect on the internalization. The obtained results of this work reveal that it is possible to modulate the cellular uptake towards enhanced internalization by dendritic cells just by modifying the applied lipids and, thus, mainly the physico-chemical properties of the liposomes. STATEMENT OF SIGNIFICANCE: In the field of nanomedicine, it is of key importance to develop new specific and efficient drug carriers. In this sense, liposomes are one of the most widely known carrier types and used in clinics with good results. However, the exact interaction mechanisms of liposomes with cells remain unclear, which is of great importance for the design of new drug delivery platforms. Therefore, in this work we demonstrate that cellular uptake depends on the lipid composition. We are able to enhance the uptake in a specific cell type just by tuning the content of a lipid in the liposome membrane. This finding could be a step towards the selective design of liposomes to be internalized by specific cells with promising applications in biomedicine.
Collapse
Affiliation(s)
- Ana Mateos-Maroto
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Meiyu Gai
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maximilian Brückner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Richard da Costa Marques
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Iain Harley
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johanna Simon
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
4
|
López CA, Zhang X, Aydin F, Shrestha R, Van QN, Stanley CB, Carpenter TS, Nguyen K, Patel LA, Chen D, Burns V, Hengartner NW, Reddy TJE, Bhatia H, Di Natale F, Tran TH, Chan AH, Simanshu DK, Nissley DV, Streitz FH, Stephen AG, Turbyville TJ, Lightstone FC, Gnanakaran S, Ingólfsson HI, Neale C. Asynchronous Reciprocal Coupling of Martini 2.2 Coarse-Grained and CHARMM36 All-Atom Simulations in an Automated Multiscale Framework. J Chem Theory Comput 2022; 18:5025-5045. [PMID: 35866871 DOI: 10.1021/acs.jctc.2c00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The appeal of multiscale modeling approaches is predicated on the promise of combinatorial synergy. However, this promise can only be realized when distinct scales are combined with reciprocal consistency. Here, we consider multiscale molecular dynamics (MD) simulations that combine the accuracy and macromolecular flexibility accessible to fixed-charge all-atom (AA) representations with the sampling speed accessible to reductive, coarse-grained (CG) representations. AA-to-CG conversions are relatively straightforward because deterministic routines with unique outcomes are achievable. Conversely, CG-to-AA conversions have many solutions due to a surge in the number of degrees of freedom. While automated tools for biomolecular CG-to-AA transformation exist, we find that one popular option, called Backward, is prone to stochastic failure and the AA models that it does generate frequently have compromised protein structure and incorrect stereochemistry. Although these shortcomings can likely be circumvented by human intervention in isolated instances, automated multiscale coupling requires reliable and robust scale conversion. Here, we detail an extension to Multiscale Machine-learned Modeling Infrastructure (MuMMI), including an improved CG-to-AA conversion tool called sinceCG. This tool is reliable (∼98% weakly correlated repeat success rate), automatable (no unrecoverable hangs), and yields AA models that generally preserve protein secondary structure and maintain correct stereochemistry. We describe how the MuMMI framework identifies CG system configurations of interest, converts them to AA representations, and simulates them at the AA scale while on-the-fly analyses provide feedback to update CG parameters. Application to systems containing the peripheral membrane protein RAS and proximal components of RAF kinase on complex eight-component lipid bilayers with ∼1.5 million atoms is discussed in the context of MuMMI.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xiaohua Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Fikret Aydin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Rebika Shrestha
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Que N Van
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Christopher B Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Timothy S Carpenter
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Kien Nguyen
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lara A Patel
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - De Chen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Violetta Burns
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicolas W Hengartner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tyler J E Reddy
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Harsh Bhatia
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Francesco Di Natale
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Albert H Chan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Frederick H Streitz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Thomas J Turbyville
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Felice C Lightstone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Helgi I Ingólfsson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Chris Neale
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
5
|
Simonis B, Vignone D, Gonzalez Paz O, Donati E, Falchetti ML, Bombelli C, Cellucci A, Auciello G, Fini I, Galantini L, Syeda RZ, Mazzonna M, Mongiardi MP, Buonocore F, Ceccacci F, Di Marco A, Mancini G. Transport of cationic liposomes in a human blood brain barrier model: Role of the stereochemistry of the gemini amphiphile on liposome biological features. J Colloid Interface Sci 2022; 627:283-298. [PMID: 35853406 DOI: 10.1016/j.jcis.2022.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/06/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
HYPOTHESIS The positive charge on liposome surface is known to promote the crossing of the Blood brain barrier (BBB). However, when diastereomeric cationic gemini amphiphiles are among lipid membrane components, also the stereochemistry may affect the permeability of the vesicle across the BBB. EXPERIMENTS Liposomes featuring cationic diasteromeric gemini amphiphiles were formulated, characterized, and their interaction with cell culture models of BBB investigated. FINDINGS Liposomes featuring the gemini amphiphiles were internalized in a monolayer of brain microvascular endothelial cells derived from human induced pluripotent stem cells (hiPSC) through an energy dependent transport, internalization involving both clathrin- and caveolae-mediated endocytosis. On the same formulations, the permeability was also evaluated across a human derived in vitro BBB transport model. The permeability of liposomes featuring the gemini amphiphiles was significantly higher compared to that of neutral liposomes (DPPC/Cholesterol), that were not able to cross BBB. Most importantly, the permeability was influenced by the stereochemistry of the gemini and pegylation of these formulations did not result in a drastic reduction of the crossing ability. The in vitro iPSC-derived BBB models used in this work represent an important advancement in the drug discovery research of novel brain delivery strategies and therapeutics for central nervous system diseases.
Collapse
Affiliation(s)
- Beatrice Simonis
- Sapienza Università di Roma, Dipartimento di Chimica, P.le A. Moro 5, Rome, Italy; CNR-ISB, Istituto per i Sistemi Biologici, Sede Secondaria di Roma-Meccanismi di Reazione c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro 5, Rome, Italy
| | | | | | - Enrica Donati
- CNR-ISB, Istituto per i Sistemi Biologici, Area della Ricerca di Roma 1, Strada Provinciale 35d 9, 00020 Montelibretti, Rome, Italy
| | - Maria Laura Falchetti
- CNR-IBBC, Istituto di Biochimica e Biologia Cellulare, Via E. Ramarini, 32, 00015 MonterotondoScalo, Rome, Italy
| | - Cecilia Bombelli
- CNR-ISB, Istituto per i Sistemi Biologici, Sede Secondaria di Roma-Meccanismi di Reazione c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro 5, Rome, Italy
| | | | - Giulio Auciello
- IRBM SpA, via Pontina Km 30.600, 00071 Pomezia (Rome), Italy
| | - Ivan Fini
- IRBM SpA, via Pontina Km 30.600, 00071 Pomezia (Rome), Italy
| | - Luciano Galantini
- Sapienza Università di Roma, Dipartimento di Chimica, P.le A. Moro 5, Rome, Italy
| | - Rudaba Zaman Syeda
- Sapienza Università di Roma, Dipartimento di Chimica, P.le A. Moro 5, Rome, Italy
| | - Marco Mazzonna
- CNR-ISB, Istituto per i Sistemi Biologici, Area della Ricerca di Roma 1, Strada Provinciale 35d 9, 00020 Montelibretti, Rome, Italy
| | - Maria Patrizia Mongiardi
- CNR-IBBC, Istituto di Biochimica e Biologia Cellulare, Via E. Ramarini, 32, 00015 MonterotondoScalo, Rome, Italy
| | - Francesco Buonocore
- Dipartimento per la Innovazione nei sistemi biologici, agroalimentari e forestali, Università della Tuscia (DIBAF), Largo dell'Università snc, 01100 Viterbo, Italy
| | - Francesca Ceccacci
- CNR-ISB, Istituto per i Sistemi Biologici, Sede Secondaria di Roma-Meccanismi di Reazione c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro 5, Rome, Italy.
| | | | - Giovanna Mancini
- CNR-ISB, Istituto per i Sistemi Biologici, Area della Ricerca di Roma 1, Strada Provinciale 35d 9, 00020 Montelibretti, Rome, Italy
| |
Collapse
|
6
|
Perra M, Fancello L, Castangia I, Allaw M, Escribano-Ferrer E, Peris JE, Usach I, Manca ML, Koycheva IK, Georgiev MI, Manconi M. Formulation and Testing of Antioxidant and Protective Effect of Hyalurosomes Loading Extract Rich in Rosmarinic Acid Biotechnologically Produced from Lavandula angustifolia Miller. Molecules 2022; 27:2423. [PMID: 35458621 PMCID: PMC9029676 DOI: 10.3390/molecules27082423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Culture of plant cells or tissues is a scalable, sustainable, and environmentally friendly approach to obtain extracts and secondary metabolites of uniform quality that can be continuously supplied in controlled conditions, independent of geographical and seasonal variations, environmental factors, and negative biological influences. In addition, tissues and cells can be extracted/obtained from the by-products of other industrial cultivations such as that of Lavandula angustifolia Miller (L. angustifolia), which is largely cultivated for the collection of flowers. Given that, an extract rich in rosmarinic acid was biotechnologically produced starting from cell suspension of L. angustifolia, which was then loaded in hyalurosomes, special phospholipid vesicles enriched with sodium hyaluronate, which in turn are capable of both immobilizing and stabilizing the system. These vesicles have demonstrated to be good candidates for skin delivery as their high viscosity favors their residence at the application site, thus promoting their interaction with the skin components. The main physico-chemical and technological characteristics of vesicles (i.e., mean diameter, polydispersity index, zeta potential and entrapment efficiency of extract in vesicles) were measured along with their biological properties in vitro: biocompatibility against fibroblasts and ability to protect the cells from oxidative stress induced by hydrogen peroxide. Overall, preliminary results disclosed the promising properties of obtained formulations to be used for the treatment of skin diseases associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Matteo Perra
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (M.P.); (L.F.); (M.A.); (M.L.M.); (M.M.)
| | - Laura Fancello
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (M.P.); (L.F.); (M.A.); (M.L.M.); (M.M.)
| | - Ines Castangia
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (M.P.); (L.F.); (M.A.); (M.L.M.); (M.M.)
| | - Mohamad Allaw
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (M.P.); (L.F.); (M.A.); (M.L.M.); (M.M.)
| | - Elvira Escribano-Ferrer
- Biopharmaceutics and Pharmacokinetics Unit, Institute for Nanoscience and Nanotechnology, University of Barcelona, 08007 Barcelona, Spain;
| | - José Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain; (J.E.P.); (I.U.)
| | - Iris Usach
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain; (J.E.P.); (I.U.)
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (M.P.); (L.F.); (M.A.); (M.L.M.); (M.M.)
| | - Ivanka K. Koycheva
- Laboratory of Metabolomics, Department of Biotechnology, Institute of Microbiology, Bulgarian Academy of Sciences, 4002 Plovdiv, Bulgaria; (I.K.K.); (M.I.G.)
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4002 Plovdiv, Bulgaria
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Department of Biotechnology, Institute of Microbiology, Bulgarian Academy of Sciences, 4002 Plovdiv, Bulgaria; (I.K.K.); (M.I.G.)
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4002 Plovdiv, Bulgaria
| | - Maria Manconi
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy; (M.P.); (L.F.); (M.A.); (M.L.M.); (M.M.)
| |
Collapse
|
7
|
Sheikholeslami B, Lam NW, Dua K, Haghi M. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sci 2022; 300:120574. [DOI: 10.1016/j.lfs.2022.120574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
|