1
|
Hajfathalian M, Mossburg KJ, Radaic A, Woo KE, Jonnalagadda P, Kapila Y, Bollyky PL, Cormode DP. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1959. [PMID: 38711134 PMCID: PMC11114100 DOI: 10.1002/wnan.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology. The engineering of targeting abilities through surface modifications involving ligands, antibodies, peptides, and other agents potentiates their effects. Recent years have witnessed the development of innovative structures with diverse compositions, expanding their applications in biomedicine. These applications encompass targeted imaging, surface-enhanced Raman spectroscopy, near-infrared II imaging, catalytic therapy, photothermal therapy, and cancer treatment. This review seeks to provide the nanomedicine community with a thorough and informative overview of the evolving landscape of complex metal nanoparticle research, with a specific emphasis on their roles in imaging, cancer therapy, infectious diseases, and biofilm treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Katherine J. Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Allan Radaic
- School of Dentistry, University of California Los Angeles
| | - Katherine E. Woo
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Pallavi Jonnalagadda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Kapila
- School of Dentistry, University of California Los Angeles
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - David P. Cormode
- Department of Radiology, Department of Bioengineering, University of Pennsylvania
| |
Collapse
|
2
|
Wang L, Li N, Wang W, Mei A, Shao J, Wang W, Dong X. Benzobisthiadiazole-Based Small Molecular Near-Infrared-II Fluorophores: From Molecular Engineering to Nanophototheranostics. ACS NANO 2024; 18:4683-4703. [PMID: 38295152 DOI: 10.1021/acsnano.3c12316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Organic fluorescent molecules with emission in the second near-infrared (NIR-II) biological window have aroused increasing investigation in cancer phototheranostics. Among these studies, Benzobisthiadiazole (BBT), with high electron affinity, is widely utilized as the electron acceptor in constructing donor-acceptor-donor (D-A-D) structured fluorophores with intensive near-infrared (NIR) absorption and NIR-II fluorescence. Until now, numerous BBT-based NIR-II dyes have been employed in tumor phototheranostics due to their exceptional structure tunability, biocompatibility, and photophysical properties. This review systematically overviews the research progress of BBT-based small molecular NIR-II dyes and focuses on molecule design and bioapplications. First, the molecular engineering strategies to fine-tune the photophysical properties in constructing the high-performance BBT-based NIR-II fluorophores are discussed in detail. Then, their biological applications in optical imaging and phototherapy are highlighted. Finally, the current challenges and future prospects of BBT-based NIR-II fluorescent dyes are also summarized. This review is believed to significantly promote the further progress of BBT-derived NIR-II fluorophores for cancer phototheranostics.
Collapse
Affiliation(s)
- Leichen Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Na Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Weili Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Anqing Mei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Wenjun Wang
- School of Physicals and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
3
|
Chen M, Tang H, Chen S, Lyu M, Quan H. Two-dimensional multifunctional nanosheets as radiosensitizers for chemodynamic/radio-therapy. Colloids Surf B Biointerfaces 2024; 234:113699. [PMID: 38113750 DOI: 10.1016/j.colsurfb.2023.113699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
The hypoxia tumor microenvironment and low radiation attenuation coefficient of tumor tissue usually limit the efficiency of radiotherapy. In this study, a two-dimensional multifunctional nano-sensitizer, CuNS@Pt, was prepared to function as a radiosensitizer, enhancing radiotherapy through multiple mechanisms. Numerous active sites were provided for the deposition of X-ray radiation energy by the in-situ chemical reduction of Pt to create functional hybrids on Cu-based nanosheets. CuNS@Pt catalyzed high concentration of endogenous hydrogen peroxide to generate oxygen in tumor microenvironment, alleviating the physiological environment of hypoxic tumors. Additionally, CuNS could reduce the content of intrinsic glutathione (GSH) and catalyze hydrogen peroxide to form hydroxyl radicals (·OH). The generated ·OH could damage mitochondria and destroy redox homeostasis due to the functional inclusion of Cu species, thereby achieving chemodynamic therapy and further improving the radiation effect. Both in vivo and in vitro experiments showed that the nano sensitizer effectively improved the therapeutic efficiency of radiotherapy and had good biological safety. All in all, this study provides a pragmatic and doable platform for maximizing the efficacy of RT in cancer. This study also highlights the future research value of two-dimensional nanomaterials.
Collapse
Affiliation(s)
- Mingzhu Chen
- Key Laboratory of Artificial Micro, and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Han Tang
- Key Laboratory of Artificial Micro, and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Shuoyan Chen
- Key Laboratory of Artificial Micro, and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Meng Lyu
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Hong Quan
- Key Laboratory of Artificial Micro, and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Li C, Fang X, Zhang H, Zhang B. Recent Advances of Emerging Metal-Containing Two-Dimensional Nanomaterials in Tumor Theranostics. Int J Nanomedicine 2024; 19:805-824. [PMID: 38283201 PMCID: PMC10822123 DOI: 10.2147/ijn.s444471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
In recent years, metal-containing two-dimensional (2D) nanomaterials, among various 2D nanomaterials have attracted widespread attention because of their unique physical and chemical properties, especially in the fields of biomedical applications. Firstly, the review provides a brief introduction to two types of metal-containing 2D nanomaterials, based on whether metal species take up the major skeleton of the 2D nanomaterials. After this, the synthetical approaches are summarized, focusing on two strategies similar to other 2D nanomaterials, top-down and bottom-up methods. Then, the performance and evaluation of these 2D nanomaterials when applied to cancer therapy are discussed in detail. The specificity of metal-containing 2D nanomaterials in physics and optics makes them capable of killing cancer cells in a variety of ways, such as photodynamic therapy, photothermal therapy, sonodynamic therapy, chemodynamic therapy and so on. Besides, the integrated platform of diagnosis and treatment and the clinical translatability through metal-containing 2D nanomaterials is also introduced in this review. In the summary and perspective section, advanced rational design, challenges and promising clinical contributions to cancer therapy of these emerging metal-containing 2D nanomaterials are discussed.
Collapse
Affiliation(s)
- Chenxi Li
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
- Graduate Collaborative Training Base of Shenzhen Second People’s Hospital, Heng Yang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Xueyang Fang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
| | - Han Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People’s Republic of China
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
| |
Collapse
|
5
|
Li H, Cheng S, Zhai J, Lei K, Zhou P, Cai K, Li J. Platinum based theranostics nanoplatforms for antitumor applications. J Mater Chem B 2023; 11:8387-8403. [PMID: 37581251 DOI: 10.1039/d3tb01035j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Platinum (Pt) based nanoplatforms are biocompatible nanoagents with photothermal antitumor performance, while exhibiting excellent radiotherapy sensitization properties. Pt-nanoplatforms have extensive research prospects in the realm of cancer treatment due to their highly selective and minimally invasive treatment mode with low damage, and integrated diagnosis and treatment with image monitoring and collaborative drug delivery. Platinum based anticancer chemotherapeutic drugs can kill tumor cells by damaging DNA through chemotherapy. Meanwhile, Pt-nanoplatforms also have good electrocatalytic activity, which can mediate novel electrodynamic therapy. Simultaneously, Pt(II) based compounds also have potential as photosensitizers in photodynamic therapy for malignant tumors. Pt-nanoplatforms can also modulate the immunosuppressive environment and synergistically ablate tumor cells in combination with immune checkpoint inhibitors. This article reviews the research progress of platinum based nanoplatforms in new technologies for cancer therapy, starting from widely representative examples of platinum based nanoplatforms in chemotherapy, electrodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy. Finally, multimodal imaging techniques of platinum based nanoplatforms for biomedical diagnosis are briefly discussed.
Collapse
Affiliation(s)
- Heying Li
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Shaowen Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Jingming Zhai
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Kun Lei
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Ping Zhou
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jinghua Li
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Zhang Z, Lo H, Zhao X, Li W, Wu K, Zeng F, Li S, Sun H. Mild photothermal/radiation therapy potentiates ferroptosis effect for ablation of breast cancer via MRI/PA imaging guided all-in-one strategy. J Nanobiotechnology 2023; 21:150. [PMID: 37158923 PMCID: PMC10169499 DOI: 10.1186/s12951-023-01910-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Nanotheranostics advances anticancer management by providing therapeutic and diagnostic functions, that combine programmed cell death (PCD) initiation and imaging-guided treatment, thus increasing the efficacy of tumor ablation and efficiently fighting against cancer. However, mild photothermal/radiation therapy with imaging-guided precise mediating PCD in solid tumors, involving processes related to apoptosis and ferroptosis, enhanced the effect of breast cancer inhibition is not fully understood. RESULTS Herein, targeted peptide conjugated gold nano cages, iRGD-PEG/AuNCs@FePt NPs ternary metallic nanoparticles (Au@FePt NPs) were designed to achieve photoacoustic imaging (PAI)/Magnetic resonance imaging (MRI) guided synergistic therapy. Tumor-targeting Au@FePt forms reactive oxygen species (ROS), initiated by X-ray-induced dynamic therapy (XDT) in collaboration with photothermal therapy (PTT), inducing ferroptosis-augmented apoptosis to realize effective antitumor therapeutics. The relatively high photothermal conversion ability of Au@FePt increases the temperature in the tumor region and hastens Fenton-like processes to achieve enhanced synergistic therapy. Especially, RNA sequencing found Au@FePt inducting the apoptosis pathway in the transcriptome profile. CONCLUSION Au@FePt combined XDT/PTT therapy activate apoptosis and ferroptosis related proteins in tumors to achieve breast cancer ablation in vitro and in vivo. PAI/MRI images demonstrated Au@FePt has real-time guidance for monitoring synergistic anti-cancer therapy effect. Therefore, we have provided a multifunctional nanotheranostics modality for tumor inhibition and cancer management with high efficacy and limited side effects.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, China
| | - Hsuan Lo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xingyang Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Wenya Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ke Wu
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, China
| | - Fanchu Zeng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shiying Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, China.
| |
Collapse
|
7
|
Li X, Hu H, Shi Y, Liu Y, Zhou M, Huang Z, Li J, Ke G, Chen M, Zhang XB. PtSnBi Nanoplates Enable Photoacoustic Imaging-Guided Highly Efficient Photothermal Tumor Ablation. Chemistry 2023; 29:e202203227. [PMID: 36484618 DOI: 10.1002/chem.202203227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
The development of photothermal agents (PTAs) with robust photostability and high photothermal conversion efficiency is of great importance for cancer photothermal therapy. Herein, a novel PTA was created using two-dimensional intermetallic PtSnBi nanoplates (NPs), which demonstrated excellent photostability and biocompatibility with a high photothermal conversion efficiency of ∼61 % after PEGylation. More importantly, PtSnBi NPs could be employed as photoacoustic imaging contrast agents for tumor visualization due to their strong absorbance in the NIR range. In addition, both in vitro and in vivo experiments confirmed that PtSnBi NPs had a good photothermal efficacy under NIR laser irradiation. Therefore, the remarkable therapeutic characteristics of PtSnBi NPs make them a most promising candidate for cancer theranostics.
Collapse
Affiliation(s)
- Xinhao Li
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huijun Hu
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yu Shi
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yongchun Liu
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Min Zhou
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhaoxin Huang
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jingchao Li
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Guoliang Ke
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mei Chen
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiao-Bing Zhang
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
8
|
Pei Z, Lei H, Cheng L. Bioactive inorganic nanomaterials for cancer theranostics. Chem Soc Rev 2023; 52:2031-2081. [PMID: 36633202 DOI: 10.1039/d2cs00352j] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bioactive materials are a special class of biomaterials that can react in vivo to induce a biological response or regulate biological functions, thus achieving a better curative effect than traditional inert biomaterials. For cancer theranostics, compared with organic or polymer nanomaterials, inorganic nanomaterials possess unique physical and chemical properties, have stronger mechanical stability on the basis of maintaining certain bioactivity, and are easy to be compounded with various carriers (polymer carriers, biological carriers, etc.), so as to achieve specific antitumor efficacy. After entering the nanoscale, due to the nano-size effect, high specific surface area and special nanostructures, inorganic nanomaterials exhibit unique biological effects, which significantly influence the interaction with biological organisms. Therefore, the research and applications of bioactive inorganic nanomaterials in cancer theranostics have attracted wide attention. In this review, we mainly summarize the recent progress of bioactive inorganic nanomaterials in cancer theranostics, and also introduce the definition, synthesis and modification strategies of bioactive inorganic nanomaterials. Thereafter, the applications of bioactive inorganic nanomaterials in tumor imaging and antitumor therapy, including tumor microenvironment (TME) regulation, catalytic therapy, gas therapy, regulatory cell death and immunotherapy, are discussed. Finally, the biosafety and challenges of bioactive inorganic nanomaterials are also mentioned, and their future development opportunities are prospected. This review highlights the bioapplication of bioactive inorganic nanomaterials.
Collapse
Affiliation(s)
- Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
9
|
Hou YK, Zhang ZJ, Li RT, Peng J, Chen SY, Yue YR, Zhang WH, Sun B, Chen JX, Zhou Q. Remodeling the Tumor Microenvironment with Core-Shell Nanosensitizer Featuring Dual-Modal Imaging and Multimodal Therapy for Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2602-2616. [PMID: 36622638 DOI: 10.1021/acsami.2c17691] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To improve the efficiency of radiation therapy (RT) for breast cancer, a designable multifunctional core-shell nanocomposite of FeP@Pt is constructed using Fe(III)-polydopamine (denoted as FeP) as the core and platinum particles (Pt) as the shell. The hybrid structure is further covered with hyaluronic acid (HA) to give the final nanoplatform of FeP@Pt@HA (denoted as FPH). FPH exhibits good biological stability, prolongs blood circulation time, and is simultaneously endowed with tumor-targeting ability. With CD44-mediated endocytosis of HA, FPH can be internalized by cancer cells and activated by the tumor microenvironment (TME). The redox reaction between Fe3+ in FPH and endogenous glutathione (GSH) or/and hydrogen peroxide (H2O2) initiates ferroptosis therapy by promoting GSH exhaustion and •OH generation. Moreover, FPH has excellent photothermal conversion efficiency and can absorb near-infrared laser energy to promote the above catalytic reaction as well as to achieve photothermal therapy (PTT). Ferroptosis therapy and PTT are further accompanied by the catalase activity of Pt nanoshells to accelerate O2 production and the high X-ray attenuation coefficient of Pt for enhanced radiotherapy (RT). Apart from the therapeutic modalities, FPH exhibits dual-modal contrast enhancement in infrared (IR) thermal imaging and computed tomography (CT) imaging, offering potential in imaging-guided cancer therapy. In this article, the nanoplatform can remodel the TME through the production of O2, GSH- and H2O2-depletion, coenhanced PTT, ferroptosis, and RT. This multimodal nanoplatform is anticipated to shed light on the design of TME-activatable materials to enhance the synergism of treatment results and enable the establishment of efficient nanomedicine.
Collapse
Affiliation(s)
- Ying-Ke Hou
- Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, Guangdong510630, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Zi-Jian Zhang
- Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, Guangdong510630, China
| | - Rong-Tian Li
- Southern University of Science and Technology Hospital, Shenzhen51805, China
| | - Jian Peng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Si-Yu Chen
- Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, Guangdong510630, China
| | - Ya-Ru Yue
- Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, Guangdong510630, China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu215123, China
| | - Bin Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Quan Zhou
- Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, Guangdong510630, China
| |
Collapse
|
10
|
Dai Q, Wang L, Ren E, Chen H, Gao X, Cheng H, An Y, Chu C, Liu G. Ruthenium-Based Metal-Organic Nanoradiosensitizers Enhance Radiotherapy by Combining ROS Generation and CO Gas Release. Angew Chem Int Ed Engl 2022; 61:e202211674. [PMID: 36184566 DOI: 10.1002/anie.202211674] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/05/2022]
Abstract
A lack of targeting accuracy and radiosensitivity severely limits clinical radiotherapy. In this study, we developed a radiosensitizer comprised of Ru-based metal-organic nanostructures (ZrRuMn-MONs@mem) to optimize irradiation by maximizing reactive oxygen species (ROS) generation and CO release in X-ray-induced dynamic therapy (XDT). The well-designed nanostructures increase the direct absorption of radiation doses (primary radiation) and promote the deposition of photons and electrons (secondary radiation). The secondary electrons were trapped and transferred in the constrained MONs where they induce a cascade of reactions to increase the therapeutic efficiency. Meanwhile, the full-length antiglypican 3 (GPC3) antibody (hGC33) expressed a cell membrane coating enabling active targeting of tumor sites with optimized biocompatibility. The ZrRuMn-MONs@mem represents a starting point for advancing an all-around radiosensitizer that operates efficiently in clinical XDT.
Collapse
Affiliation(s)
- Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xing Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengchao Chu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| |
Collapse
|
11
|
Wang H, Li S, Yang Y, Zhang L, Zhang Y, Wei T. Perspectives of metal-organic framework nanosystem to overcome tumor drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:954-970. [PMID: 36627891 PMCID: PMC9771744 DOI: 10.20517/cdr.2022.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 12/23/2022]
Abstract
Cancer is one of the most harmful diseases in the world, which causes huge numbers of deaths every year. Many drugs have been developed to treat tumors. However, drug resistance usually develops after a period of time, which greatly weakens the therapeutic effect. Tumor drug resistance is characterized by blocking the action of anticancer drugs, resisting apoptosis and DNA repair, and evading immune recognition. To tackle tumor drug resistance, many engineered drug delivery systems (DDS) have been developed. Metal-organic frameworks (MOFs) are one kind of emerging and promising nanocarriers for DDS with high surface area and abundant active sites that make the functionalization simpler and more efficient. These features enable MOFs to achieve advantages easily towards other materials. In this review, we highlight the main mechanisms of tumor drug resistance and the characteristics of MOFs. The applications and opportunities of MOF-based DDS to overcome tumor drug resistance are also discussed, shedding light on the future development of MOFs to address tumor drug resistance.
Collapse
Affiliation(s)
- Huafeng Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Shi Li
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yiting Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Lei Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yinghao Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,Correspondence to: Dr. Tianxiang Wei, School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China. E-mail:
| |
Collapse
|
12
|
Zhang J, Ha E, Li D, Wang L, Hu J. Ultrasmall AgBiSe 2 nanodots for CT/thermal imaging-guided photothermal tumor therapy in the NIR-II biowindow. NANOSCALE 2022; 14:10750-10760. [PMID: 35797993 DOI: 10.1039/d2nr02908a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stimulus-responsive ternary chalcogenide nanomaterials are regarded as promising 'all-in-one' nanotheranostics agents on account of their tunable band structures and multi-metal intrinsic properties. Herein, ultrasmall AgBiSe2 nanodots are prepared by a simple thermal injection method. It shows a narrow band gap of 0.91 eV and high absorption coefficient in the NIR-II biowindow, resulting in excellent photothermal performance. Under the irradiation of a 1064 nm laser, AgBiSe2 can induce the overexpression of intracellular heat shock protein (Hsp70) and cell apoptosis to inhibit the growth of tumor cells. The strong signal from CT/thermal imaging also provides guidance for tumor diagnosis. Importantly, AgBiSe2 can be rapidly excreted from the body, thus avoiding long term toxicity. This study presents the first biomedical application of AgBiSe2 nanodots in cancer treatment and extends the development of ternary chalcogenide-based semiconductor nanomedicine.
Collapse
Affiliation(s)
- Jingge Zhang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China.
| | - Enna Ha
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China.
| | - Danyang Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China.
| | - Luyang Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China.
- Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| |
Collapse
|
13
|
Chen Y, Liu X, Zheng X, Huang X, Dan W, Li Z, Dan N, Wang Y. Advances on the modification and biomedical applications of acellular dermal matrices. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractAcellular dermal matrix (ADM) is derived from natural skin by removing the entire epidermis and the cell components of dermis, but retaining the collagen components of dermis. It can be used as a therapeutic alternative to “gold standard” tissue grafts and has been widely used in many surgical fields, since it possesses affluent predominant physicochemical and biological characteristics that have attracted the attention of researchers. Herein, the basic science of biologics with a focus on ADMs is comprehensively described, the modification principles and technologies of ADM are discussed, and the characteristics of ADMs and the evidence behind their use for a variety of reconstructive and prosthetic purposes are reviewed. In addition, the advances in biomedical applications of ADMs and the common indications for use in reconstructing and repairing wounds, maintaining homeostasis in the filling of a tissue defect, guiding tissue regeneration, and delivering cells via grafts in surgical applications are thoroughly analyzed. This review expectedly promotes and inspires the emergence of natural raw collagen-based materials as an advanced substitute biomaterial to autologous tissue transplantation.
Graphical Abstract
Collapse
|
14
|
Feng W, Zhang S, Wan Y, Chen Z, Qu Y, Li J, James TD, Pei Z, Pei Y. Nanococktail Based on Supramolecular Glyco-Assembly for Eradicating Tumors In Vivo. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20749-20761. [PMID: 35481368 DOI: 10.1021/acsami.2c03463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of robust phototherapeutic strategies for eradicating tumors remains a significant challenge in the transfer of cancer phototherapy to clinical practice. Here, a phototherapeutic nanococktail atovaquone/17-dimethylaminoethylamino-17-demethoxygeldanamycin/glyco-BODIPY (ADB) was developed to enhance photodynamic therapy (PDT) and photothermal therapy (PTT) via alleviation of hypoxia and thermal resistance that was constructed using supramolecular self-assembly of glyco-BODIPY (BODIPY-SS-LAC, BSL-1), hypoxia reliever atovaquone (ATO), and heat shock protein inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG). Benefiting from a glyco-targeting and glutathione (GSH) responsive units BSL-1, ADB can be rapidly taken up by hepatoma cells, furthermore the loaded ATO and 17-DMAG can be released in original form into the cytoplasm. Using in vitro and in vivo results, it was confirmed that ADB enhanced the synergetic PDT and PTT upon irradiation using 685 nm near-infrared light (NIR) under a hypoxic tumor microenvironment where ATO can reduce O2 consumption and 17-DMAG can down-regulate HSP90. Moreover, ADB exhibited good biosafety, and tumor eradication in vivo. Hence, this as-developed phototherapeutic nanococktail overcomes the substantial obstacles encountered by phototherapy in tumor treatment and offers a promising approach for the eradication of tumors.
Collapse
Affiliation(s)
- Weiwei Feng
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shangqian Zhang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yichen Wan
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zelong Chen
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yun Qu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jiahui Li
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
15
|
Jiang Y, Zhao W, Zhou H, Zhang Q, Zhang S. ATP-Triggered Intracellular In Situ Aggregation of a Gold-Nanoparticle-Equipped Triple-Helix Molecular Switch for Fluorescence Imaging and Photothermal Tumor Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3755-3764. [PMID: 35291761 DOI: 10.1021/acs.langmuir.1c03331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isotropic gold nanoparticles (AuNPs) can generate a plasma-plasma interaction when aggregating and can also produce ideal photothermal effects. Some studies have designed ATP-responsive nanodrug delivery systems by taking advantage of the differences between internal and external ATP in tumor cells, but few studies have focused on the photothermal effects of ATP-induced AuNP aggregation in tumors. Here, a triple-helix probe (THP) molecular switch and MUC1 aptamer-functionalized AuNPs were constructed for fluorescence imaging analysis and photothermal therapy (PTT). The MUC1 aptamer guides THP-AuNP targeting in tumor cells, followed by the high concentration of ATP inducing structural changes in triple-helix probes and causing the intracellular aggregation of AuNPs, which cannot escape from the tumor site, enabling tumor imaging while performing PTT. Therefore, the designed THP-AuNPs have promising applications in fluorescence imaging and PTT.
Collapse
Affiliation(s)
- Yao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Wenjing Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Huimin Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Qiuqi Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
16
|
Korolev D, Postnov V, Aleksandrov I, Murin I. The Combination of Solid-State Chemistry and Medicinal Chemistry as the Basis for the Synthesis of Theranostics Platforms. Biomolecules 2021; 11:1544. [PMID: 34680176 PMCID: PMC8534059 DOI: 10.3390/biom11101544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
This review presents the main patterns of synthesis for theranostics platforms. We examine various approaches to the interpretation of theranostics, statistics of publications drawn from the PubMed database, and the solid-state and medicinal chemistry methods used for the formation of nanotheranostic objects. We highlight and analyze chemical methods for the modification of nanoparticles, synthesis of spacers with functional end-groups, and the immobilization of medicinal substances and fluorophores. An overview of the modern solutions applied in various fields of medicine is provided, along with an outline of specific examples and an analysis of modern trends and development areas of theranostics as a part of personalized medicine.
Collapse
Affiliation(s)
- Dmitry Korolev
- Almazov National Medical Research Centre, Institute of Experimental Medicine, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (D.K.); (V.P.)
| | - Viktor Postnov
- Almazov National Medical Research Centre, Institute of Experimental Medicine, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (D.K.); (V.P.)
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia;
| | - Ilia Aleksandrov
- Almazov National Medical Research Centre, Institute of Experimental Medicine, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (D.K.); (V.P.)
| | - Igor Murin
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia;
| |
Collapse
|