1
|
Mirlohi K, Blocher McTigue WC. Coacervation for biomedical applications: innovations involving nucleic acids. SOFT MATTER 2024; 21:8-26. [PMID: 39641131 DOI: 10.1039/d4sm01253d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Gene therapies, drug delivery systems, vaccines, and many other therapeutics, although seeing breakthroughs over the past few decades, still suffer from poor stability, biocompatibility, and targeting. Coacervation, a liquid-liquid phase separation phenomenon, is a pivotal technique increasingly employed to enhance the effectiveness of therapeutics. Through coacervation strategies, many current challenges in therapeutic formulations can be addressed due to the tunable nature of this technique. However, much remains to be explored to enhance these strategies further and scale them from the benchtop to industrial applications. In this review, we highlight the underlying mechanisms of coacervation, elucidating how factors such as pH, ionic strength, temperature, chirality, and charge patterning influence the formation of coacervates and the encapsulation of active ingredients. We then present a perspective on current strategies harnessing these systems, specifically for nucleic acid-based therapeutics. These include peptide-, protein-, and polymer-based approaches, nanocarriers, and hybrid methods, each offering unique advantages and challenges. Nucleic acid-based therapeutics are crucial for designing rapid responses to diseases, particularly in pandemics. While these exciting systems offer many advantages, they also present limitations and challenges which are explored in this work. Exploring coacervation in the biomedical frontier opens new avenues for innovative nucleic acid-based treatments, marking a significant stride towards advanced therapeutic solutions.
Collapse
Affiliation(s)
- Kimiasadat Mirlohi
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| | | |
Collapse
|
2
|
Tomalia DA. Dendrimers, Dendrons, and the Dendritic State: Reflection on the Last Decade with Expected New Roles in Pharma, Medicine, and the Life Sciences. Pharmaceutics 2024; 16:1530. [PMID: 39771509 PMCID: PMC11676903 DOI: 10.3390/pharmaceutics16121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 01/06/2025] Open
Abstract
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.e., dendrons/dendrimers) with nanoscale sizes and structure-controlled features that match and rival discrete in vivo biopolymers such as proteins and nucleic acids (i.e., DNA, siRNA, mRNA, etc.). These dendritic architectures exhibit unprecedented new intrinsic properties widely recognized to define a new fourth major polymer architecture class, namely: Category (IV): dendrons, dendrimers, and random hyperbranched polymers after traditional categories: (I) linear, (II) cross-linked, and (III) simple-branched types. Historical confusion over the first examples of the structure confirmed and verified cascade, dendron, dendrimer, and arborol syntheses, while associated misuse of accepted dendritic terminology is also reviewed and clarified. The importance of classifying all dendrons and dendrimers based on branch cell symmetry and the significant role of critical nanoscale-design parameters (CNDPs) for optimizing dendritic products for pharma/nanomedicine applications with a focus on enhancing stealth, non-complement activation properties is presented. This is followed by an overview of the extraordinary growth observed for amphiphilic dendron/dendrimer syntheses and their self-assembly into dendritic supramolecular assemblies, as well as many unique applications demonstrated in pharma and nanomedicine, especially involving siRNA delivery and mRNA vaccine development. This perspective is concluded with optimistic expectations predicted for new dendron and dendrimer application roles in pharma, nanomedicine, and life sciences.
Collapse
Affiliation(s)
- Donald A. Tomalia
- The National Dendrimer & Nanotechnology Center, NanoSynthons LLC, Mt. Pleasant, MI 48858, USA; ; Tel.: +1-989-317-3737
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
3
|
Li H, Zha S, Li H, Liu H, Wong KL, All AH. Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203629. [PMID: 36084240 DOI: 10.1002/smll.202203629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.
Collapse
Affiliation(s)
- Hengde Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Shuai Zha
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Haolan Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Haitao Liu
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| | - Angelo H All
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
4
|
Kaup R, Velders AH. Controlling Trapping, Release, and Exchange Dynamics of Micellar Core Components. ACS NANO 2022; 16:14611-14621. [PMID: 36107137 PMCID: PMC9527800 DOI: 10.1021/acsnano.2c05144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Whereas the formation and overall stability of hierarchically organized self-assembled supramolecular structures have been extensively investigated, the mechanistic aspects of subcomponent dynamics are often poorly understood or controlled. Here we show that the dynamics of polyamidoamine (PAMAM) dendrimer based micelles can be manipulated by changes in dendrimer generation, pH, and stoichiometry, as proven by NMR and FRET. For this, dendrimers were functionalized with either fluorescein (donor) or rhodamine (acceptor) and encapsulated into separate micelles. Upon mixing, exchange of dendrimers is revealed by an increase in FRET. While dendrimicelles based on dendrimer generations 4 and 5 show a clear increase in FRET in time, revealing the dynamic exchange of dendrimers between micellar cores, generation 6 based micelles appear to be kinetically trapped systems. Interestingly, generation 6 based dendrimicelles prepared at a pH of 7.8 rather than 7.0 do show exchange dynamics, which can be attributed to about 25% less charge of the dendrimer, corresponding to the charge of a virtual generation 5.5 dendrimer at neutral pH. Changing the pH of dendrimicelle solutions prepared at a pH of 7.8 to 7.0 shows the activated release of dendrimers. High-resolution NMR spectra of the micellar core are obtained from a 1.2 GHz spectrometer with sub-micromolar sensitivity, with DOSY discriminating released dendrimers from dendrimers still present in the micellar core. This study shows that dendrimer generation, charge density, and stoichiometry are important mechanistic factors for controlling the dynamics of complex coacervate core micelles. This knowledge can be used to tune micelles between kinetically trapped and dynamic systems, with tuning of exchange and/or release speeds, to be tailored for applications in, e.g., material science, sensors, or drug delivery.
Collapse
Affiliation(s)
- Rebecca Kaup
- Laboratory
of BioNanoTechnology, Wageningen University. Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Aldrik H. Velders
- Laboratory
of BioNanoTechnology, Wageningen University. Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Instituto
Regional de Investigacion Cientifica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| |
Collapse
|
5
|
Fernandes T, Daniel-da-Silva AL, Trindade T. Metal-dendrimer hybrid nanomaterials for sensing applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Bonardd S, Díaz Díaz D, Leiva A, Saldías C. Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon. Polymers (Basel) 2021; 13:4404. [PMID: 34960954 PMCID: PMC8705239 DOI: 10.3390/polym13244404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Dendrimers (from the Greek dendros → tree; meros → part) are macromolecules with well-defined three-dimensional and tree-like structures. Remarkably, this hyperbranched architecture is one of the most ubiquitous, prolific, and recognizable natural patterns observed in nature. The rational design and the synthesis of highly functionalized architectures have been motivated by the need to mimic synthetic and natural-light-induced energy processes. Dendrimers offer an attractive material scaffold to generate innovative, technological, and functional materials because they provide a high amount of peripherally functional groups and void nanoreservoirs. Therefore, dendrimers emerge as excellent candidates since they can play a highly relevant role as unimolecular reactors at the nanoscale, acting as versatile and sophisticated entities. In particular, they can play a key role in the properties of light-energy harvesting and non-radiative energy transfer, allowing them to function as a whole unit. Remarkably, it is possible to promote the occurrence of the FRET phenomenon to concentrate the absorbed energy in photoactive centers. Finally, we think an in-depth understanding of this mechanism allows for diverse and prolific technological applications, such as imaging, biomedical therapy, and the conversion and storage of light energy, among others.
Collapse
Affiliation(s)
- Sebastián Bonardd
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
| | - David Díaz Díaz
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
- Institutfür Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Angel Leiva
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| | - César Saldías
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| |
Collapse
|