1
|
Ishkhanyan H, Santana-Bonilla A, Lorenz CD. PUCHIK: A Python Package To Analyze Molecular Dynamics Simulations of Aspherical Nanoparticles. J Chem Inf Model 2025; 65:1694-1701. [PMID: 39928985 PMCID: PMC11863366 DOI: 10.1021/acs.jcim.4c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/12/2025]
Abstract
Accurately describing a nanoparticle's interface is crucial for understanding its internal structure, interfacial properties, and ultimately, its functionality. While current computational methods provide reasonable descriptions for spherical and quasi-spherical nanoparticles, there remains a need for effective models for aspherical structures such as capsules and rod-like systems. This work introduces Python Utility for Characterizing Heterogeneous Interfaces and Kinetics (PUCHIK), a novel algorithm developed to describe both spherelike and aspherical nanoparticles. With an accurate description of the location of the interface of the nanoparticle, this algorithm then allows for various other important quantities (e.g., densities of different atom/molecule types relative to the interface, volume of the nanoparticle, amount of solubilized molecules within the nanoparticle) to be calculated. Our software development, we focused on providing good performance to computationally demanding projects, while ensuring that the methodological approach can be adapted as a protocol for other code implementations.
Collapse
Affiliation(s)
- Hrachya Ishkhanyan
- Institute
for Informatics and Automation Problems of the National Academy of
Sciences of the Republic of Armenia, 0014 Yerevan, Republic of Armenia
- Department
of Physics, King’s College London, London WC2R 2LS, United Kingdom
| | | | - Christian D. Lorenz
- Department
of Engineering, King’s College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
2
|
López-Ríos de Castro R, Santana-Bonilla A, Ziolek RM, Lorenz CD. Automated Analysis of Soft Matter Interfaces, Interactions, and Self-Assembly with PySoftK. J Chem Inf Model 2025; 65:1679-1684. [PMID: 39929140 PMCID: PMC11863363 DOI: 10.1021/acs.jcim.4c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
Molecular dynamics simulations have become essential tools in the study of soft matter and biological macromolecules. The large amount of high-dimensional data associated with such simulations does not straightforwardly elucidate the atomistic mechanisms that underlie complex materials and molecular processes. Analysis of these simulations is complicated: the dynamics intrinsic to soft matter simulations necessitates careful application of specific, and often complex, algorithms to extract meaningful molecular scale understanding. There is an ongoing need for high-quality automated computational workflows to facilitate this analysis in a reproducible manner with minimal user input. In this work, we introduce a series of molecular simulation analysis tools for investigating interfaces, molecular interactions (including ring-ring stacking), and self-assembly. In addition, we include a number of auxiliary tools, including a useful function to unwrap molecular structures that are greater than half the length of their corresponding simulation box. These tools are contained in the PySoftK software package, making the application of these algorithms straightforward for the user. These new simulation analysis tools within PySoftK will support high-quality, reproducible analysis of soft matter and biomolecular simulations to bring about new predictive understanding in nano- and biotechnology.
Collapse
Affiliation(s)
- Raquel López-Ríos de Castro
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
- Biological
Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, United Kingdom
- In Silico
Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Robert M. Ziolek
- Biological
Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, United Kingdom
| | - Christian D. Lorenz
- Biological
Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, United Kingdom
- Department
of Engineering, King’s College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
3
|
Dante D, Jangra J, Baidya ATK, Kumar R, Darreh-Shori T. Micellar Choline-Acetyltransferase Complexes Exhibit Ultra-Boosted Catalytic Rate for Acetylcholine Synthesis-Mechanistic Insights for Development of Acetylcholine-Enhancing Micellar Nanotherapeutics. Int J Mol Sci 2024; 25:13602. [PMID: 39769363 PMCID: PMC11679501 DOI: 10.3390/ijms252413602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Choline-acetyltransferase (ChAT) is the key cholinergic enzyme responsible for the biosynthesis of acetylcholine (ACh), a crucial signaling molecule with both canonical neurotransmitter function and auto- and paracrine signaling activity in non-neuronal cells, such as lymphocytes and astroglia. Cholinergic dysfunction is linked to both neurodegenerative and inflammatory diseases. In this study, we investigated a serendipitous observation, namely that the catalytic rate of human recombinant ChAT (rhChAT) protein greatly differed in buffered solution in the presence and absence of Triton X-100 (TX100). At a single concentration of 0.05% (v/v), TX100 boosted the specific activity of rhChAT by 4-fold. Dose-response analysis within a TX100 concentration range of 0.8% to 0.008% (accounting for 13.7 mM to 0.013 mM) resulted in an S-shaped response curve, indicative of an over 10-fold boost in the catalytic rate of rhChAT. This dramatic boost was unlikely due to a mere structural stabilization since it remained even after the addition of 1.0 mg/mL gelatin to the ChAT solution as a protein stabilizer. Furthermore, we found that the catalytic function of the ACh-degrading enzyme, AChE, was unaffected by TX100, underscoring the specificity of the effect for ChAT. Examination of the dose-response curve in relation to the critical micelle concentration (CMC) of TX100 revealed that a boost in ChAT activity occurred when the TX100 concentration passed its CMC, indicating that formation of micelle-ChAT complexes was crucial. We challenged this hypothesis by repeating the experiment on Tween 20 (TW20), another non-ionic surfactant with ~3-fold lower CMC compared to TX100 (0.06 vs. 0.2 mM). The analysis confirmed that micelle formation is crucial for ultra-boosting the activity of ChAT. In silico molecular dynamic simulation supported the notion of ChAT-micelle complex formation. We hypothesize that TX100 or TW20 micelles, by mimicking cell-membrane microenvironments, facilitate ChAT in accessing its full catalytic potential by fine-tuning its structural stabilization and/or enhancing its substrate accessibility. These insights are expected to facilitate research toward the development of new cholinergic-enhancing therapeutics through the formulation of micelle-embedded ChAT nanoparticles.
Collapse
Affiliation(s)
- Davide Dante
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 57 Stockholm, Sweden;
| | - Jatin Jangra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, India; (J.J.); (A.T.K.B.); (R.K.)
| | - Anurag T. K. Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, India; (J.J.); (A.T.K.B.); (R.K.)
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, India; (J.J.); (A.T.K.B.); (R.K.)
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 57 Stockholm, Sweden;
| |
Collapse
|
4
|
Abu Koush A, Popa EG, Pricop DA, Nita L, Foia CI, Pauna AMR, Buca BR, Pavel LL, Mititelu-Tartau L. Enhanced Stability and In Vitro Biocompatibility of Chitosan-Coated Lipid Vesicles for Indomethacin Delivery. Pharmaceutics 2024; 16:1574. [PMID: 39771553 PMCID: PMC11676990 DOI: 10.3390/pharmaceutics16121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Lipid vesicles, especially those utilizing biocompatible materials like chitosan (CHIT), hold significant promise for enhancing the stability and release characteristics of drugs such as indomethacin (IND), effectively overcoming the drawbacks associated with conventional drug formulations. OBJECTIVES This study seeks to develop and characterize novel lipid vesicles composed of phosphatidylcholine and CHIT that encapsulate indomethacin (IND-ves), as well as to evaluate their in vitro hemocompatibility. METHODS The systems encapsulating IND were prepared using a molecular droplet self-assembly technique, involving the dissolution of lipids, cholesterol, and indomethacin in ethanol, followed by sonication and the gradual incorporation of a CHIT solution to form stable vesicular structures. The vesicles were characterized in terms of size, morphology, Zeta potential, and encapsulation efficiency and the profile release of drug was assessd. In vitro hemocompatibility was evaluated by measuring erythrocyte lysis and quantifying hemolysis rates. RESULTS The IND-ves exhibited an entrapment efficiency of 85%, with vesicles averaging 317.6 nm in size, and a Zeta potential of 24 mV, indicating good stability in suspension. In vitro release kinetics demonstrated an extended release profile of IND from the vesicles over 8 h, contrasting with the immediate release observed from plain drug solutions. The hemocompatibility assessment revealed that IND-ves exhibited minimal hemolysis, comparable to control groups, indicating good compatibility with erythrocytes. CONCLUSIONS IND-ves provide a promising approach for modified indomethacin delivery, enhancing stability and hemocompatibility. These findings suggest their potential for effective NSAID delivery, with further in vivo studies required to explore clinical applications.
Collapse
Affiliation(s)
- Angy Abu Koush
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.K.); (C.-I.F.); (B.R.B.); (L.M.-T.)
| | - Eliza Gratiela Popa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela Angelica Pricop
- Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania, RECENT AIR, Laboratory of Astronomy and Astrophysics, Astronomical Observatory, Department of Physics, ‘Al. I. Cuza’ University, 700506 Iasi, Romania;
| | - Loredana Nita
- ‘P. Poni’ Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania;
| | - Cezar-Ilie Foia
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.K.); (C.-I.F.); (B.R.B.); (L.M.-T.)
| | - Ana-Maria Raluca Pauna
- Department of Anatomy, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Beatrice Rozalina Buca
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.K.); (C.-I.F.); (B.R.B.); (L.M.-T.)
| | - Liliana Lacramioara Pavel
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800010 Galati, Romania;
| | - Liliana Mititelu-Tartau
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.A.K.); (C.-I.F.); (B.R.B.); (L.M.-T.)
| |
Collapse
|
5
|
Lei D, Xin J, Yao Y, Chen L, Liu J, Wang S, Wang J, Zeng W, Yao C. In situ pain relief during photodynamic therapy by ROS-responsive nanomicelle through blocking VGSC. Colloids Surf B Biointerfaces 2024; 242:114062. [PMID: 38972255 DOI: 10.1016/j.colsurfb.2024.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Pain in photodynamic therapy (PDT), resulting from the stimulation of reactive oxygen species (ROS) and local acute inflammation, is a primary side effect of PDT that often leads to treatment interruption or termination, significantly compromising the efficacy of PDT and posing an enduring challenge for clinical practice. Herein, a ROS-responsive nanomicelle, poly(ethylene glycol)-b-poly(propylene sulphide) (PEG-PPS) encapsulated Ce6 and Lidocaine (LC), (ESCL) was used to address these problems. The tumor preferentially accumulated micelles could realize enhanced PDT effect, as well as in situ quickly release LC due to its ROS generation ability after light irradiation, which owes to the ROS-responsive property of PSS. In addition, PSS can suppress inflammatory pain which is one of the mechanisms of PDT induced pain. High LC-loaded efficiency (94.56 %) owing to the presence of the thioether bond of the PPS made an additional pain relief by inhibiting excessive inflammation besides blocking voltage-gated sodium channels (VGSC). Moreover, the anti-angiogenic effect of LC offers further therapeutic effects of PDT. The in vitro and in vivo anti-tumor results revealed significant PDT efficacy. The signals of the sciatic nerve in mice were measured by electrophysiological study to evaluate the pain relief, results showed that the relative integral area of neural signals in ESCL-treated mice decreased by 49.90 % compared to the micelles without loaded LC. Therefore, our study not only develops a very simple but effective tumor treatment PDT and in situ pain relief strategy during PDT, but also provides a quantitative pain evaluation method.
Collapse
Affiliation(s)
- Dongqin Lei
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Xin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yuanping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Lan Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| |
Collapse
|
6
|
Matamoros-Recio A, Alonso-Rueda E, Borrego E, Caballero A, Pérez PJ, Martín-Santamaría S. Molecular Dynamic Simulations of Aqueous Micellar Organometallic Catalysis: Methane Functionalization as a Case Study. Angew Chem Int Ed Engl 2024; 63:e202314773. [PMID: 38055325 DOI: 10.1002/anie.202314773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023]
Abstract
Molecular Dynamics (MD) simulations constitute a powerful tool that provides a 3D perspective of the dynamical behavior of chemical systems. Herein the first MD study of the dynamics of a catalytic organometallic system, in micellar media, is presented. The challenging methane catalytic functionalization into ethyl propionate through a silver-catalyzed process has been targeted as the case study. The intimate nature of the micelles formed with the surfactants sodium dodecylsulfate (SDS) and potassium perfluorooctane sulfonate (PFOS) has been ascertained, as well as the relative distribution of the main actors in this transformation, namely methane, the diazo reagent and the silver catalyst, the latter in two different forms: the initial compound and a silver-carbene intermediate. Catalyst deactivation occurs with halide containing surfactants dodecyltrimethylammonium chloride (DTAC) and Triton X-100. Computed simulations allow explaining the experimental results, indicating that micelles behave differently regarding the degree of accumulation and the local distribution of the reactants and their effect in the molecular collisions leading to net reaction.
Collapse
Affiliation(s)
- Alejandra Matamoros-Recio
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| | - Elia Alonso-Rueda
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| | - Elena Borrego
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Pedro J Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Sonsoles Martín-Santamaría
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| |
Collapse
|
7
|
Xie J, Pink DL, Jayne Lawrence M, Lorenz CD. Digestion of lipid micelles leads to increased membrane permeability. NANOSCALE 2024; 16:2642-2653. [PMID: 38229565 DOI: 10.1039/d3nr05083a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Lipid-based drug carriers are an attractive option to solubilise poorly water soluble therapeutics. Previously, we reported that the digestion of a short tail PC lipid (2C6PC) by the PLA2 enzyme has a significant effect on the structure and stability of the micelles it forms. Here, we studied the interactions of micelles of varying composition representing various degrees of digestion with a model ordered (70 mol% DPPC & 30 mol% cholesterol) and disordered (100% DOPC) lipid membrane. Micelles of all compositions disassociated when interacting with the two different membranes. As the percentage of digestion products (C6FA and C6LYSO) in the micelle increased, the disassociation occurred more rapidly. The C6FA inserts preferentially into both membranes. We find that all micelle components increase the area per lipid, increase the disorder and decrease the thickness of the membranes, and the 2C6PC lipid molecules have the most significant impact. Additionally, there is an increase in permeation of water into the membrane that accompanies the insertion of C6FA into the DOPC membranes. We show that the natural digestion of lipid micelles result in molecular species that can enhance the permeability of lipid membranes that in turn result in an enhanced delivery of drugs.
Collapse
Affiliation(s)
- Jun Xie
- Biological & Soft Matter Research Group, Department of Physics, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London, UK.
| | - Demi L Pink
- Biological & Soft Matter Research Group, Department of Physics, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London, UK.
| | - M Jayne Lawrence
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester, UK
| | - Christian D Lorenz
- Biological & Soft Matter Research Group, Department of Physics, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London, UK.
| |
Collapse
|
8
|
Chen C, Wu Y, Wang ST, Berisha N, Manzari MT, Vogt K, Gang O, Heller DA. Fragment-based drug nanoaggregation reveals drivers of self-assembly. Nat Commun 2023; 14:8340. [PMID: 38097573 PMCID: PMC10721832 DOI: 10.1038/s41467-023-43560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Drug nanoaggregates are particles that can deleteriously cause false positive results during drug screening efforts, but alternatively, they may be used to improve pharmacokinetics when developed for drug delivery purposes. The structural features of molecules that drive nanoaggregate formation remain elusive, however, and the prediction of intracellular aggregation and rational design of nanoaggregate-based carriers are still challenging. We investigate nanoaggregate self-assembly mechanisms using small molecule fragments to identify the critical molecular forces that contribute to self-assembly. We find that aromatic groups and hydrogen bond acceptors/donors are essential for nanoaggregate formation, suggesting that both π-π stacking and hydrogen bonding are drivers of nanoaggregation. We apply structure-assembly-relationship analysis to the drug sorafenib and discover that nanoaggregate formation can be predicted entirely using drug fragment substructures. We also find that drug nanoaggregates are stabilized in an amorphous core-shell structure. These findings demonstrate that rational design can address intracellular aggregation and pharmacologic/delivery challenges in conventional and fragment-based drug development processes.
Collapse
Affiliation(s)
- Chen Chen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - You Wu
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shih-Ting Wang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Naxhije Berisha
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- The Graduate Center of the City University of New York, New York, NY, 10016, USA
- Department of Chemistry, Hunter College, City University of New York, New York, 10065, USA
| | - Mandana T Manzari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Kaleidoscope Technologies, Inc., New York, NY, 10003, USA
| | - Kristen Vogt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA.
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Rana AA, Yusaf A, Shahid S, Usman M, Ahmad M, Aslam S, Al-Hussain SA, Zaki MEA. Unveiling the Role of Nonionic Surfactants in Enhancing Cefotaxime Drug Solubility: A UV-Visible Spectroscopic Investigation in Single and Mixed Micellar Formulations. Pharmaceuticals (Basel) 2023; 16:1663. [PMID: 38139790 PMCID: PMC10747636 DOI: 10.3390/ph16121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
This study reports the interfacial phenomenon of cefotaxime in combination with nonionic surfactants, Triton X-100 (TX-100) and Tween-80 (TW-80), and their mixed micellar formulations. Cefotaxime was enclosed in a micellar system to improve its solubility and effectiveness. TX-100 and TW-80 were used in an amphiphilic self-assembly process to create the micellar formulation. The effect of the addition of TX-100, a nonionic surfactant, on the ability of TW-80 to solubilize the drug was examined. The values of the critical micelle concentration (CMC) were determined via UV-Visible spectroscopy. Gibbs free energies (ΔGp and ΔGb), the partition coefficient (Kx), and the binding constant (Kb) were also computed. In a single micellar system, the partition coefficient (Kx) was found to be 33.78 × 106 and 2.78 × 106 in the presence of TX-100 and TW-80, respectively. In a mixed micellar system, the value of the partition coefficient for the CEF/TW-80 system is maximum (5.48 × 106) in the presence of 0.0019 mM of TX-100, which shows that TX-100 significantly enhances the solubilizing power of micelles. It has been demonstrated that these surfactants are effective in enhancing the solubility and bioavailability of therapeutic compounds. This study elaborates on the physicochemical characteristics and solubilization of reactive drugs in single and mixed micellar media. This investigation, conducted in the presence of surfactants, shows a large contribution to the binding process via both hydrogen bonding and hydrophobic interactions.
Collapse
Affiliation(s)
- Aysha Arshad Rana
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Amnah Yusaf
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Salma Shahid
- Department of Biochemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
10
|
Bjørnestad VA, Li X, Tribet C, Lund R, Cascella M. Micelle kinetics of photoswitchable surfactants: Self-assembly pathways and relaxation mechanisms. J Colloid Interface Sci 2023; 646:883-899. [PMID: 37235934 DOI: 10.1016/j.jcis.2023.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
HYPOTHESIS A key question in the kinetics of surfactant self-assembly is whether exchange of unimers or fusion/fission of entire micelles is the dominant pathway. In this study, an isomerizable surfactant is used to explore fundamental out-of-equilibrium kinetics and mechanisms for growth and dissolution of micelles. EXPERIMENTS The kinetics of cationic surfactant 4-butyl-4'-(3-trimethylammoniumpropoxy)-phenylazobenzene was studied using molecular dynamics simulations. The fusion and exchange processes were investigated using umbrella sampling. Equilibrium states were validated by comparison with small-angle X-ray scattering data. The photo-isomerization event was simulated by modifying the torsion potential of the photo-responsive group to emulate the trans-to-cis transition. FINDINGS Micelle growth is dominated by unimer exchange processes, whereas, depending on the conditions, dissolution can occur both through fission and unimer expulsion. Fusion barriers increase steeply with the aggregation number making this an unlikely pathway to equilibrium for micelles of sizes that fit with the experimental data. The barriers for unimer expulsion remain constant and are much lower for unimer insertion, making exchange more likely at high aggregation. When simulating photo-conversion events, both fission and a large degree of unimer expulsion can occur depending on the extent of the out-of-equilibrium stress that is put on the system.
Collapse
Affiliation(s)
- Victoria Ariel Bjørnestad
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Sem Sælands vei 26, Oslo, 0371, Norway
| | - Xinmeng Li
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Sem Sælands vei 26, Oslo, 0371, Norway
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Reidar Lund
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Sem Sælands vei 26, Oslo, 0371, Norway.
| | - Michele Cascella
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Sem Sælands vei 26, Oslo, 0371, Norway.
| |
Collapse
|
11
|
Kroll P, Exner L, Brandenbusch C, Sadowski G. Influence of Hydrophobic and Hydrophilic Chain Length of C iE j Surfactants on the Solubilization of Active Pharmaceutical Ingredients. Mol Pharm 2023; 20:1296-1306. [PMID: 36565283 DOI: 10.1021/acs.molpharmaceut.2c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Up to 90% of all newly developed active pharmaceutical ingredients (APIs) are poorly water soluble, most likely also showing a low oral bioavailability. In order to increase the aqueous solubility of these APIs, surfactants are promising excipients to increase both solubility and consequently bioavailability (e.g., in lipid- and surfactant-based drug delivery systems). In this work, we investigated the influence of hydrophobic and hydrophilic chain lengths of CiEj surfactants (C8E6, C10E6, and C10E8) toward the solubilization of fenofibrate, naproxen, and lidocaine. Furthermore, we investigated the partitioning of these APIs between the surfactant aggregates and the surrounding aqueous bulk phase. For all APIs considered, we determined the locus of API solubilization as well as the individual aggregation numbers (Nagg) of surfactants and API molecules in an API/surfactant aggregate. We further determined the hydrodynamic radius (Rh) of the API/surfactant aggregates in the absence and presence of the APIs. The size of the API/surfactant aggregates (Nagg, Rh) passes through a minimum upon lidocaine solubilization; it gradually increases upon naproxen solubilization and is almost constant upon fenofibrate solubilization. The results give valuable insights into the solubilization mechanisms of APIs in the CiEj surfactant aggregates. Our results reveal that fenofibrate is solely solubilized in the hydrophobic core of the CiEj surfactant aggregates, as only the hydrophobic chain length of the surfactant influences its solubilization. Naproxen is solubilized in the palisade layer of the surfactant aggregates, as both the hydrophobic and hydrophilic chain lengths are decisive for its solubilization. Lidocaine is mainly solubilized in the rather hydrophilic corona region of the surfactant aggregates, as the hydrophilic chain length of the surfactant governs its solubilization. The results further reveal that the hydrophilic/lipophilic balance is not an appropriate measure to estimate the solubilization capacity of surfactant aggregates.
Collapse
Affiliation(s)
- Peter Kroll
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227Dortmund, Germany
| | - Lara Exner
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227Dortmund, Germany
| | - Christoph Brandenbusch
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227Dortmund, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227Dortmund, Germany
| |
Collapse
|