1
|
Saini R, Kukreti P, Chauhan R, Panwar A, Ghosh K. A well-defined phosphine-free metal-ligand cooperative route for N-alkylation of aromatic amines via activation of renewable alcohols catalyzed by NNN pincer cobalt(II) complexes. Dalton Trans 2025; 54:5838-5848. [PMID: 40079181 DOI: 10.1039/d4dt03095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This study presents the direct N-alkylation of aromatic amines using greener primary alcohols as alkyl donors, catalyzed by base metal-derived Co(II) catalysts via the borrowing hydrogen (BH) method. Two well-defined phosphine-free NNN-type pincer ligands (L1 and L2) were synthesized and utilized to prepare cobalt(II) catalysts C1 and C2. The catalysts were well characterized by UV-vis, IR, HRMS, and single-crystal X-ray diffraction studies. The catalysts C1 and C2 were utilized for the N-alkylation of various aromatic, heteroaromatic as well as aromatic diamines, and a wide substrate scope total of 30 derivatives was explored with isolated yields up to 95%. Two antihistamine drug precursors for tripelennamine and mepyramine were synthesized on a gram scale for the large-scale applicability of the current protocol. Various control experiments were also performed to explore the possible reaction intermediates and reaction pathway. Cobalt(II) intermediates involved in the catalytic cycle were also characterized by the HRMS study.
Collapse
Affiliation(s)
- Rahul Saini
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Prashant Kukreti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Rahul Chauhan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Abhishek Panwar
- Department of Chemistry National Institute of Technology Manipur, Langol-795004, Imphal West, Manipur, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
2
|
Tran HV, Dang TT, Nguyen NH, Tran HT, Nguyen DT, Do DV, Le TS, Ngo TH, Late YKE, Amaniampong PN, Fletcher E, Hung TQ, Cheng Y, Nguyen TK, Tran TS, Zhang J, An H, Nguyen NT, Trinh QT. Methanol Activation: Strategies for Utilization of Methanol as C1 Building Block in Sustainable Organic Synthesis. CHEMSUSCHEM 2025; 18:e202401974. [PMID: 39555972 DOI: 10.1002/cssc.202401974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/19/2024]
Abstract
The development of efficient and sustainable chemical processes which use greener reagents and solvents, currently play an important role in current research. Methanol, a cheap and readily available resource from chemical industry, could be activated by transition metal catalysts. This review focuses in covering the recent five-years literature and provides a systematic summary of strategies for methanol activation and the use in organic chemistry. Based on these strategies, many new synthetic methods have been developed for methanol utilization as the C1 building block in methylation, hydromethylation, aminomethylation, formylation reactions, as well as the syntheses of urea derivatives and heterocycles. The achievements, synthetic applications, limitations, some advanced approaches, and future perspectives of the methanol activation methodologies have been described in this review.
Collapse
Affiliation(s)
- Hung-Vu Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300 A Nguyen Tat Thanh St., District 4, Ho Chi Minh City, 7280, Viet Nam
| | - Tuan Thanh Dang
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 11021, Viet Nam
| | - Nguyen Hoang Nguyen
- Energy and Environmental Technology Division, Vietnam - Korea Institute of Science and Technology, Hoa Lac High-Tech Park, Hanoi, Viet Nam
| | - Huyen Thu Tran
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5 A 0 A7, Canada
| | - Dung Tien Nguyen
- Vietnam University of Traditional Medicine, No. 2 Tran Phu St., Ha Dong, Hanoi, 12110, Viet Nam
| | - Dang Van Do
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 11021, Viet Nam
| | - Thanh Son Le
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 11021, Viet Nam
| | - Thuong Hanh Ngo
- Vietnam University of Traditional Medicine, No. 2 Tran Phu St., Ha Dong, Hanoi, 12110, Viet Nam
| | - Yawa K E Late
- CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, 1 rue Marcel Doré, Bat B1 (ENSI-Poitiers), 86073, Poitiers, France
| | - Prince Nana Amaniampong
- CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, 1 rue Marcel Doré, Bat B1 (ENSI-Poitiers), 86073, Poitiers, France
| | - Eugene Fletcher
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Tran Quang Hung
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Yuran Cheng
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Tuan Sang Tran
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
3
|
Tanwar D, Mahala S, Ahluwalia D, Bhuvanesh N, Joshi H, Kumar U. Nickel Complexes Bearing Quinoline Derived NNS Donor Ligands as Catalytic Activators for N-Alkylation of Anilines with Alcohols. Chem Asian J 2024; 19:e202400557. [PMID: 38993064 DOI: 10.1002/asia.202400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
Herein, we have reported a new series of NNS-donor ligands coordinated Ni(II) complexes and utilized them as catalytic activator to synthesize N-alkylated amines and 1,2-disubstituted benzimidazoles. The reaction of thiophenol/4-chlorothiophenol/4-methylthiophenol/4-methoxythiophenol with 2-bromo-N-quinolin-8-yl-acetamide in presence of sodium hydroxide in ethanol at 80 °C gave [C9H6N-NH-C(O)-CH2-S-Ar] [Ar=C6H5 (L1); C6H4Cl-4 (L2); C6H4Me-4 (L3) and C6H4-OMe-4 (L4)], respectively. The corresponding reaction of L1-L4 with Ni(OAc)2 in methanol at 80 °C for 3 hours resulted in octahedral nickel complexes [(L1-H)2Ni] (C1), [(L2-H)2Ni] (C2), [(L3-H)2Ni] (C3), and [(L4-H)2Ni] (C4), respectively. All compounds have been characterized by micro and spectroscopic analysis. The molecular structure of complexes C1-C3 has also been determined by single crystal X-ray diffraction data. The utility of complexes C1-C4 were evaluated for the N-alkylation of aniline with benzyl alcohols, and for 1,2-disubstituted benzimidazoles synthesis. The obtained results indicate that complex C1 showed better catalytic activity in both N-alkylation of amines with benzyl alcohols [catalyst loading: 2.0 mol %; Yield up to 92 %], and for 1,2-disubstituted benzimidazoles derivatives [catalyst loading: 2.0 mol %; Yield up to 94 %)]. The mechanistic studies suggested that the reaction works through hydrogen borrowing from benzyl alcohol and its subsequent utilization for in situ reduction of imine. The experimentally observed catalytic reactivity patterns of complexes C1-C4 have found in good agreement with the HOMO-LUMO energy gaps obtained by DFT analysis of corresponding complexes.
Collapse
Affiliation(s)
- Deepika Tanwar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, 110019, India
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - Suman Mahala
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Deepali Ahluwalia
- Department of Chemistry, S. S. Jain Subodh P.G. (Autonomous) College, Rambagh Circle, Jaipur, Rajasthan, 302007, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas, 77842-3012, USA
| | - Hemant Joshi
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, 110019, India
| |
Collapse
|
4
|
Mechrouk V, Leforestier B, Chen W, Poblador-Bahamonde AI, Maisse-Francois A, Bellemin-Laponnaz S, Achard T. Diastereoselective Synthesis of Sulfoxide-Functionalized N-Heterocyclic Carbene Ruthenium Complexes: An Experimental and Computational Study. Chemistry 2024; 30:e202401390. [PMID: 38862385 DOI: 10.1002/chem.202401390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
The synthesis of sulfoxide-functionalized NHC ligand precursors were carried out by direct and mild oxidation from corresponding thioether precursors with high selectivity. Using these salts, a series of cationic [Ru(II)(η6-p-cymene)(NHC-SO)Cl]+ complexes were obtained in excellent yields by the classical Ag2O transmetallation route. NMR analyses suggested a chelate structure for the metal complexes, and X-ray diffractometry studies of complexes 4 b, 4 c, 4dBArF and 4 e unambiguously confirmed the preference for the bidentate (κ2-C,S) coordination mode of the NHC-SO ligands. Interestingly, only one diastereomer, in the form of an enantiomeric pair, was observed both in 1H NMR and in the solid state for the complexes. DFT calculations showed a possible intrinsic energy difference between the two pairs of diastereomer. The calculated energy barriers suggested that inversion of the sulfoxide is only plausible from the higher energy diastereomer together with bulky substituents. Inverting the configuration at the Ru center instead shows a lower and accessible activation barrier to provide the most stable diastereomer through thermodynamic control, consistent with the observation of a single species by 1H NMR as a pair of enantiomers. All these complexes catalyse the β-alkylation of secondary alcohols. Complex 4dPF6 bearing an NHC-functionalised S-Ad group has been further studied with different primary and secondary alcohols as substrates, showing high reactivity and high to moderate β-ol-selectivities.
Collapse
Affiliation(s)
- Victoria Mechrouk
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
| | - Baptiste Leforestier
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Weighang Chen
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
| | | | - Aline Maisse-Francois
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
| | - Stéphane Bellemin-Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
| | - Thierry Achard
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR 7504, 23 rue du Loess, BP 43, 67034, Strasbourg Cedex 2, France
- New address: ISM2 (UMR 7313), Aix Marseille University, CNRS, Centrale Marseille, 52 Av. Escadrille Normandie Niemen, 13013, Marseille, France
| |
Collapse
|
5
|
Sekar PK, Rengan R, Sundarraman B. NNO Pincer-Supported Pd(II)-Catalyzed Reductive N-Alkylation of Challenging Nitroarenes with Alcohols via Borrowing Hydrogen Strategy. J Org Chem 2024; 89:11161-11172. [PMID: 39081033 DOI: 10.1021/acs.joc.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A sustainable catalytic synthesis of selective monoalkylated amines from nitroarenes and alcohols by new palladium(II)-NNO pincer-type complexes has been described. Herein, a series of Pd(II) complexes [Pd(NNO)PPh3] (1-3) are synthesized and characterized by analytical and spectroscopic (IR, NMR, and HR-MS) methods. The solid-state molecular structures of two complexes are established by X-ray single-crystal diffraction. Furthermore, the catalytic N-alkylation of challenging nitroarenes with primary and secondary alcohols has been performed by the well-defined palladium(II) complexes via borrowing hydrogen strategy. The current protocol offers a wide range of monoalkylated amines (26 examples) with a maximum yield of 87% utilizing 1 mol % of catalyst loading. Gratifyingly, the catalytic system works well under mild reaction conditions and atom economy with water is the only byproduct. Furthermore, control experiments confirm the formation of probable intermediates (aniline, aldehyde, and imine), and deuterium labeling authenticates the borrowing hydrogen mechanism. A gram-scale synthesis of an alkylated product clearly demonstrates the synthetic efficacy of the present catalytic methodology.
Collapse
Affiliation(s)
- Pranesh Kavin Sekar
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu 620 024, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu 620 024, India
| | - Balaji Sundarraman
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
6
|
Brodie CN, Goodfellow AS, Andrews MJ, Owen AE, Bühl M, Kumar A. Direct synthesis of partially ethoxylated branched polyethylenimine from ethanolamine. Nat Commun 2024; 15:6253. [PMID: 39048574 PMCID: PMC11269587 DOI: 10.1038/s41467-024-50403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
We report here a method to make a branched and partially ethoxylated polyethyleneimine derivative directly from ethanolamine. The polymerization reaction is catalysed by a pincer complex of Earth-abundant metal, manganese, and produces water as the only byproduct. Industrial processes to produce polyethyleneimines involve the transformation of ethanolamine to a highly toxic chemical, aziridine, by an energy-intensive/waste-generating process followed by the ring-opening polymerization of aziridine. The reported method bypasses the need to produce a highly toxic intermediate and presents advantages over the current state-of-the-art. We propose that the polymerization process follows a hydrogen borrowing pathway that involves (a) dehydrogenation of ethanolamine to form 2-aminoacetaldehyde, (b) dehydrative coupling of 2-aminoacetaldehyde with ethanolamine to form an imine derivative, and (c) subsequent hydrogenation of imine derivative to form alkylated amines.
Collapse
Affiliation(s)
- Claire N Brodie
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Matthew J Andrews
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Aniekan E Owen
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Amit Kumar
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| |
Collapse
|
7
|
Kumar Chaudhary V, Kukreti P, Sharma K, Kumar K, Singh S, Kumari S, Ghosh K. A sustainable strategic approach for N-alkylation of amines with activation of alcohols triggered via a hydrogen auto-transfer reaction using a Pd(II) complex: evidence for metal-ligand cooperativity. Dalton Trans 2024; 53:8740-8749. [PMID: 38712566 DOI: 10.1039/d4dt00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This work describes a new well-defined, air-stable, phosphine free palladium(II) [Pd(L)Cl] (1) catalyst. This catalyst was utilized for N-alkylation of amines and indole synthesis where H2O was found to be the by-product. A broad range of aromatic amines were alkylated using this homogeneous catalyst with a catalyst loading of 0.1 mol%. Greener aromatic and aliphatic primary alcohols were utilized and a hydrogen auto-transfer strategy via a metal-ligand cooperative approach was investigated. The precursor of the antihistamine-containing drug molecule tripelennamine was synthesized on a gram scale for large-scale applicability of the current synthetic methodology. A number of control experiments were performed to investigate the possible reaction pathway and the outcomes of these experiments indicated the azo-chromophore as a hydrogen reservoir during the catalytic cycle.
Collapse
Affiliation(s)
- Virendra Kumar Chaudhary
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Prashant Kukreti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Keshav Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Kapil Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Sain Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Sheela Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
8
|
Templ J, Schnürch M. A Guide for Mono-Selective N-Methylation, N-Ethylation, and N-n-Propylation of Primary Amines, Amides, and Sulfonamides and Their Applicability in Late-Stage Modification. Chemistry 2024; 30:e202304205. [PMID: 38353032 DOI: 10.1002/chem.202304205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 03/06/2024]
Abstract
This review provides a comprehensive overview of mono-alkylation methodologies targeting crucial nitrogen moieties - amines, amides, and sulfonamides - found in organic building blocks and pharmaceuticals. Emphasizing the intersection of chemical precision with drug discovery, the central challenge addressed is achieving one-pot mono-selective short-chain N-alkylations (methylations, ethylations, and n-propylations), preventing undesired overalkylation. Additionally, sustainable, safe, and benign alternatives to traditional alkylating agents, including alcohols, carbon dioxide, carboxylic acids, nitriles, alkyl phosphates, quaternary ammonium salts, and alkyl carbonates, are explored. This review, categorized by the nature of the alkylating agent, aids researchers in selecting suitable methods for mono-selective N-alkylation.
Collapse
Affiliation(s)
- Johanna Templ
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060, Vienna, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060, Vienna, Austria
| |
Collapse
|
9
|
Patil RD, Pratihar S. Ruthenium(II)-Catalyzed Hydrogenation and Tandem (De)Hydrogenation via Metal-Ligand Cooperation: Base- and Solvent-Assisted Switchable Selectivity. J Org Chem 2024; 89:1361-1378. [PMID: 36283058 DOI: 10.1021/acs.joc.2c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A versatile, selective, solvent (methanol vs ethanol)- and base (potassium vs lithium carbonate)-assisted switchable synthesis of saturated ketone and α-methyl saturated ketone from α,β-unsaturated ketone is developed. Mechanistic aspects, evaluated from spectroscopic studies, in situ monitoring of the reaction progress, control studies, and labeling studies, further indicate the involvement of a tandem dehydrogenation-condensation-hydrogenation sequence in the reaction, in which the interconvertible coordination mode (imino N → Ru and amido N-Ru) of coordinated imidazole with Ru(II)-para-cymene is crucial, without which the efficiency and selectivity of the catalyst are completely lost. The catalyst demonstrates good efficiency, selectivity, and functional group tolerance and displays a broad scope (69 examples) for monomethylation and hydrogenation of unsaturated chalcones, double methylation of ketones, and N-methylation of amines.
Collapse
Affiliation(s)
- Rahul Daga Patil
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Sanjay Pratihar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
10
|
Gao C, Li Y, Wang M, Gong D, Zhao L. Ru(II)-Catalyzed N-Methylation of Amines Using Methanol as the C1 Source. ACS OMEGA 2023; 8:36597-36603. [PMID: 37810663 PMCID: PMC10552110 DOI: 10.1021/acsomega.3c06260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
Four ruthenium complexes were used as catalysts for the N-methylation of amines using methanol as the C1 source under weak base conditions. The (DPEPhos)RuCl2PPh3(1a) catalyst showed the best catalytic performance (0.5 mol %, 12 h). The deuterium labeling and control experiments suggested the reaction via the Ru-H mechanism. This study provides a new ruthenium catalyst system for N-methylation with methanol under weak base conditions.
Collapse
Affiliation(s)
- Caiyu Gao
- Key Laboratory
of Preparation
and Application of Environmental Friendly Materials, Ministry of Education,
College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Yufei Li
- Key Laboratory
of Preparation
and Application of Environmental Friendly Materials, Ministry of Education,
College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Minghao Wang
- Key Laboratory
of Preparation
and Application of Environmental Friendly Materials, Ministry of Education,
College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Dawei Gong
- Key Laboratory
of Preparation
and Application of Environmental Friendly Materials, Ministry of Education,
College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Lina Zhao
- Key Laboratory
of Preparation
and Application of Environmental Friendly Materials, Ministry of Education,
College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| |
Collapse
|
11
|
NAWAZ Z, GÜRBÜZ N, ZAFAR MN, ÖZDEMIR N, ÇETİNKAYA B, ÖZDEMİR İ. Benzimidazol-2-ylidene ruthenium complexes for C-N bond formation through alcohol dehydrogenation. Turk J Chem 2023; 47:1209-1223. [PMID: 38173746 PMCID: PMC10760900 DOI: 10.55730/1300-0527.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
A low temperature hydrogen borrowing approach to generate secondary amines using benzimidazole-based N-heterocyclic carbene (BNHC) ruthenium complexes is reported. A series of the piano-stool complexes of the type [(η6-p-cymene)(BNHC)RuCl2] (1a-g) were synthesized via one-pot reaction of the NHC salt precursor, Ag2O, and [RuCl2(p-cymene)]2 and characterized using conventional spectroscopic techniques. The geometry of two precursors, [(η6-p-cymene)(Me4BnMe2BNHCCH2OxMe)RuCl2] (1f) and [(η6-p-cymene)(Me5BnMe2BNHCCH2OxMe)RuCl2] (1g), was studied by single crystal X-ray diffraction. These catalysts were found to dehydrogenate alcohols efficiently at temperatures as low as 50 °C to allow Schiff-base condensation and subsequent imine hydrogenation to afford secondary amines. Notably, this ruthenium-based procedure enables the N-alkylation of aromatic and heteroaromatic primary amines with a wide range of primary alcohols in excellent yields of up to 98%. The present methodology is green and water is liberated as the sole byproduct.
Collapse
Affiliation(s)
- Zahid NAWAZ
- Department of Chemistry, Quaid-i-Azam University, Islamabad,
Pakistan
- Catalysis Research and Application Center, İnönü University, Malatya,
Turkiye
| | - Nevin GÜRBÜZ
- Catalysis Research and Application Center, İnönü University, Malatya,
Turkiye
- Department of Chemistry, Faculty of Science and Arts, İnönü University, Malatya,
Turkiye
- Drug Application and Research Center, İnönü University, Malatya,
Turkiye
| | | | - Namık ÖZDEMIR
- Department of Mathematics and Science Education, Faculty of Education, Ondokuz Mayıs University, Samsun,
Turkiye
| | - Bekir ÇETİNKAYA
- Department of Chemistry, Faculty of Science, Ege University, İzmir,
Turkiye
| | - İsmail ÖZDEMİR
- Catalysis Research and Application Center, İnönü University, Malatya,
Turkiye
- Department of Chemistry, Faculty of Science and Arts, İnönü University, Malatya,
Turkiye
- Drug Application and Research Center, İnönü University, Malatya,
Turkiye
| |
Collapse
|
12
|
Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND. N-Alkylation of Amines by C1-C10 Aliphatic Alcohols Using A Well-Defined Ru(II)-Catalyst. A Metal-Ligand Cooperative Approach. J Org Chem 2023; 88:5944-5961. [PMID: 37052217 DOI: 10.1021/acs.joc.3c00313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A Ru(II)-catalyzed efficient and selective N-alkylation of amines by C1-C10 aliphatic alcohols is reported. The catalyst [Ru(L1a)(PPh3)Cl2] (1a) bearing a tridentate redox-active azo-aromatic pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) is air-stable, easy to prepare, and showed wide functional group tolerance requiring only 1.0 mol % (for N-methylation and N-ethylation) and 0.1 mol % of catalyst loading for N-alkylation with C3-C10 alcohols. A wide array of N-methylated, N-ethylated, and N-alkylated amines were prepared in moderate to good yields via direct coupling of amines and alcohols. 1a efficiently catalyzes the N-alkylation of diamines selectively. It is even suitable for synthesizing N-alkylated diamines using (aliphatic) diols producing the tumor-active drug molecule MSX-122 in moderate yield. 1a showed excellent chemo-selectivity during the N-alkylation using oleyl alcohol and monoterpenoid β-citronellol. Control experiments and mechanistic investigations revealed that the 1a-catalyzed N-alkylation reactions proceed via a borrowing hydrogen transfer pathway where the hydrogen removed from the alcohol during the dehydrogenation step is stored in the ligand backbone of 1a, which in the subsequent steps transferred to the in situ formed imine intermediate to produce the N-alkylated amines.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
13
|
Çakır S, Kavukcu SB, Şahin O, Günnaz S, Türkmen H. N-Alkylation and N-Methylation of Amines with Alcohols Catalyzed by Nitrile-Substituted NHC-Ir(III) and NHC-Ru(II) Complexes. ACS OMEGA 2023; 8:5332-5348. [PMID: 36816636 PMCID: PMC9933218 DOI: 10.1021/acsomega.2c06341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
A series of nitrile-modified N-heterocyclic carbene (NHC) complexes of Ir(III) (2a-e) and Ru(II) (3a-d) have been prepared by transmetallation of [IrCp*Cl2]2 and [RuCl2(p-cymene)]2 forming an in situ NHC-Ag complex. The structures of all complexes were characterized by 1H NMR, 13C NMR, and Fourier transform infrared (FT-IR) spectroscopies. And the structures were clearly elucidated by performing X-ray diffraction studies on 2b, 3a, and 3c single crystals. The complexes of NHC-Ir(III) (2a-e) and NHC-Ru(II) (3a-d) were investigated in the N-alkylation reaction of aniline derivatives with benzyl alcohols to form N-benzyl amines and in the N-methylation reaction of aniline derivatives with methanol. Both reactions were performed in solvent-free media. The Ir(III) complexes (2a-e) were found to perform essentially better than similar Ru(II) complexes (3a-d) in the N-alkylation and N-methylation reactions. Among the Ir(III) complexes (2a-e), the best results were obtained with 2b. The catalytic mechanisms of both reactions were revealed by 1H NMR study. Formation of Ir-hydride species was observed for both reactions. This new report provides useful information to evaluate the activity of complexes and the differences in sensitivity between the NHCs.
Collapse
Affiliation(s)
- Sinem Çakır
- Department
of Chemistry, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Serdar Batıkan Kavukcu
- Department
of Chemistry, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Onur Şahin
- Department
of Occupat Health & Safety, Faculty of Health Sciences, Sinop University, Sinop 57000, Türkiye
| | - Salih Günnaz
- Department
of Chemistry, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Hayati Türkmen
- Department
of Chemistry, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| |
Collapse
|
14
|
Catalano A, Mariconda A, Sinicropi MS, Ceramella J, Iacopetta D, Saturnino C, Longo P. Biological Activities of Ruthenium NHC Complexes: An Update. Antibiotics (Basel) 2023; 12:365. [PMID: 36830276 PMCID: PMC9952499 DOI: 10.3390/antibiotics12020365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Ruthenium N-heterocyclic carbene (NHC) complexes have unique physico-chemical properties as catalysts and a huge potential in medicinal chemistry and pharmacology, exhibiting a variety of notable biological activities. In this review, the most recent studies on ruthenium NHC complexes are summarized, focusing specifically on antimicrobial and antiproliferative activities. Ruthenium NHC complexes are generally active against Gram-positive bacteria, such as Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Listeria monocytogenes and are seldom active against Gram-negative bacteria, including Salmonella typhimurium, Pseudomonas aeruginosa and Escherichia coli and fungal strains of Candida albicans. The antiproliferative activity was tested against cancer cell lines of human colon, breast, cervix, epidermis, liver and rat glioblastoma cell lines. Ruthenium NHC complexes generally demonstrated cytotoxicity higher than standard anticancer drugs. Further studies are needed to explore the mechanism of action of these interesting compounds.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | | | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
15
|
Chakraborty S, Mondal R, Pal S, Guin AK, Roy L, Paul ND. Zn(II)-Catalyzed Selective N-Alkylation of Amines with Alcohols Using Redox Noninnocent Azo-Aromatic Ligand as Electron and Hydrogen Reservoir. J Org Chem 2023; 88:771-787. [PMID: 36577023 DOI: 10.1021/acs.joc.2c01773] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a sustainable and eco-friendly approach for selective N-alkylation of various amines by alcohols, catalyzed by a well-defined Zn(II)-catalyst, Zn(La)Cl2 (1a), bearing a tridentate arylazo scaffold. A total of 57 N-alkylated amines were prepared in good to excellent yields, out of which 17 examples are new. The Zn(II)-catalyst shows wide functional group tolerance, is compatible with the synthesis of dialkylated amines via double N-alkylation of diamines, and produces the precursors in high yields for the marketed drugs tripelennamine and thonzonium bromide in gram-scale reactions. Control reactions and DFT studies indicate that electron transfer events occur at the azo-chromophore throughout the catalytic process, which shuttles between neutral azo, one-electron reduced azo-anion radical, and two-electron reduced hydrazo forms acting both as electron and hydrogen reservoir, enabling the Zn(II)-catalyst for N-alkylation reaction.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai - IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
16
|
Recent advances in the catalytic N-methylation and N-trideuteromethylation reactions using methanol and deuterated methanol. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Mayr J, Reich RM, Kühn FE. Ru(II) complexes with phosphine-functionalized NHC ligands in catalytic transfer hydrogenations. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Jafarzadeh M, Sobhani SH, Gajewski K, Kianmehr E. Recent advances in C/ N-alkylation with alcohols through hydride transfer strategies. Org Biomol Chem 2022; 20:7713-7745. [PMID: 36169049 DOI: 10.1039/d2ob00706a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the most recent reports in three powerful and ever-growing fields of borrowing hydrogen, acceptorless dehydrogenative coupling, and base-mediated hydride transfer strategies; which pave the way for generating reactive intermediates via shuttling hydrogen (or hydride) between starting materials without any need for an external hydrogen source to easily construct more complex structures. There is a thorough focus on diversifying the utility of alcohols for C/N-alkylation leading to the synthesis of branched ketones, alcohols, amines, indols, and 6-membered nitrogen-containing heterocycles such as pyridines and pyrimidines, various transformations with the focus on C-C and C-N bond-forming reactions via metal-based catalysis or metal-free approaches in this context to give a global overview in this area.
Collapse
Affiliation(s)
- Mahdi Jafarzadeh
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | - Seyed Hasan Sobhani
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | | | - Ebrahim Kianmehr
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| |
Collapse
|
19
|
Pan J, Li J, Xia XF, Zeng W, Wang D. High Active Palladium Composite and Catalytic Applications on the Synthesis of Substituted Aminopyridine Derivatives Through Borrowing Hydrogen Strategy. Catal Letters 2022. [DOI: 10.1007/s10562-022-04024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Borrowing hydrogen amination: Whether a catalyst is required? J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Wang Y, Zhang FL, Liu ZJ, Yao ZJ. Half-Sandwich Iridium Complexes with Hydrazone Ligands: Synthesis and Catalytic Activity in N-Alkylation of Anilines or Nitroarenes with Alcohols via Hydrogen Autotransfer. Inorg Chem 2022; 61:10310-10320. [PMID: 35767836 DOI: 10.1021/acs.inorgchem.2c00703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we synthesize a series of hydrazone-based N,O-chelate half-sandwich iridium complexes through a facile route. All air-stable iridium complexes show high catalytic activity in N-alkylation of a broad scope of aniline derivatives and alcohols with liberating water as the sole byproduct. This reaction provides a smooth route to synthesize diverse monoalkylated amines in good to excellent yields at moderate temperature with a low catalyst loading. Moreover, the challenging N-alkylation process using nitroarene substrates as coupling partners is also carried out in this catalytic system. The mechanistic study shows that the present iridium catalysis process proceeds through a hydrogen borrowing mechanism. All iridium(III) complexes 1-4 are characterized by infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and elemental analysis.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fang-Lei Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zi-Jian Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.,Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
22
|
Podyacheva E, Afanasyev OI, Vasilyev DV, Chusov D. Borrowing Hydrogen Amination Reactions: A Complex Analysis of Trends and Correlations of the Various Reaction Parameters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Evgeniya Podyacheva
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Oleg I. Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Dmitry V. Vasilyev
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstr. 3, 91058 Erlangen, Germany
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
23
|
Kumar KN, Reddy MM, Panchami H, Velayutham R, Dhaked DK, Swain SP. Thiourea as oxyanion stabilizer for Iridium catalyzed, base free green synthesis of amines: Synthesis of cardiovascular drug ticlopidine. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Chen TR, Chen YT, Chen YS, Lee WJ, Lin YH, Wang HC. Iridium/graphene nanostructured catalyst for the N-alkylation of amines to synthesize nitrogen-containing derivatives and heterocyclic compounds in a green process. RSC Adv 2022; 12:4760-4770. [PMID: 35425512 PMCID: PMC8981502 DOI: 10.1039/d1ra09052f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
A facile iridium/graphene-catalyzed methodology providing an efficient synthetic route for C-N bond formation is reported. This catalyst can directly promote the formation of C-N bonds, without pre-activation steps, and without solvents, alkalis and other additives. This protocol provides a direct N-alkylation of amines using a variety of primary and secondary alcohols with good selectivity and excellent yields. Charmingly, the use of diols resulted in intermolecular cyclization of amines, and such products are privileged structures in biologically active compounds. Two examples illustrate the advantages of this catalyst in organic synthesis: the tandem catalysis to synthesize hydroxyzine, and the intermolecular cyclization to synthesize cyclizine. Water is the only by-product, which makes this catalytic process sustainable and environmentally friendly.
Collapse
Affiliation(s)
- Tsun-Ren Chen
- Department of Applied Chemistry, National Ping Tung University Pingtung City Taiwan
| | - Yu-Tung Chen
- Department of Applied Chemistry, National Ping Tung University Pingtung City Taiwan
| | - Yi-Sheng Chen
- Department of Applied Chemistry, National Ping Tung University Pingtung City Taiwan
| | - Wen-Jen Lee
- Department of Applied Physics, National Ping Tung University Pingtung City Taiwan
| | - Yen-Hsing Lin
- Department of Applied Chemistry, National Ping Tung University Pingtung City Taiwan
| | - Hao-Chen Wang
- Department of Applied Chemistry, National Ping Tung University Pingtung City Taiwan
| |
Collapse
|
25
|
Half‐Sandwich Ruthenium Complexes Bearing Hemilabile κ
2
‐(
C
,
S
)−Thioether‐Functionalized NHC Ligands: Application to Amide Synthesis from Alcohol and Amine. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Moutaoukil Z, Serrano-Díez E, Collado IG, Jiménez-Tenorio M, Botubol-Ares JM. N-Alkylation of organonitrogen compounds catalyzed by methylene-linked bis-NHC half-sandwich ruthenium complexes. Org Biomol Chem 2022; 20:831-839. [PMID: 35018948 DOI: 10.1039/d1ob02214h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An efficient ruthenium-catalyzed N-alkylation of amines, amides and sulfonamides has been developed employing novel pentamethylcyclopentadienylruthenium(II) complexes bearing the methylene linked bis(NHC) ligand bis(3-methylimidazol-2-ylidene)methane. The acetonitrile complex 2 has proven particularly effective with a broad range of substrates with low catalyst loading (0.1-2.5 mol%) and high functional group tolerance under mild conditions. A total of 52 N-alkylated organonitrogen compounds including biologically relevant scaffolds were synthesized from (hetero)aromatic and aliphatic amines, amides and sulfonamides using alcohols or diols as alkylating agents in up to 99% isolated yield, even on gram-scale reactions. In the case of sulfonamides, it is the first example of N-alkylation employing a transition-metal complex bearing NHC ligands.
Collapse
Affiliation(s)
- Zakaria Moutaoukil
- University of Cadiz, Departamento de Química Orgánica-INBIO, Facultad de Ciencias, Torre Sur, 4° planta, 11510, Puerto Real, Cádiz.
| | - Emmanuel Serrano-Díez
- University of Cadiz, Departamento de Química Orgánica-INBIO, Facultad de Ciencias, Torre Sur, 4° planta, 11510, Puerto Real, Cádiz.
| | - Isidro G Collado
- University of Cadiz, Departamento de Química Orgánica-INBIO, Facultad de Ciencias, Torre Sur, 4° planta, 11510, Puerto Real, Cádiz.
| | - Manuel Jiménez-Tenorio
- University of Cadiz, Departamento de Ciencias de los Materiales e Ingeniería Metalúrgica y Química Inorgánica-INBIO, Facultad de Ciencias, Torre Norte, 1° planta, 11510, Puerto Real, Cádiz, Spain
| | - José Manuel Botubol-Ares
- University of Cadiz, Departamento de Química Orgánica-INBIO, Facultad de Ciencias, Torre Sur, 4° planta, 11510, Puerto Real, Cádiz.
| |
Collapse
|
27
|
Donthireddy SNR, Singh VK, Rit A. A heteroditopic NHC and phosphine ligand supported ruthenium( ii)-complex: an effective catalyst for the N-alkylation of amides using alcohols. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00544a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heteroditopic Ru(ii)-bis-NHC complex in combination with dppe was developed as an effective catalyst system (0.2 mol% loading) for the N-alkylation of amides and selective mono-/di-alkylation of 4-aminobenzamide derivatives in excellent yields.
Collapse
Affiliation(s)
- S. N. R. Donthireddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai- 600036, India
| | - Vivek Kumar Singh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai- 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai- 600036, India
| |
Collapse
|
28
|
Kabadwal LM, Bera S, Banerjee D. Recent advances in sustainable organic transformations using methanol: expanding the scope of hydrogen-borrowing catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo01412a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent progress relating to sustainable approaches using methanol as a C1-alkylating agent for C–Me and N–Me bond formation is discussed.
Collapse
Affiliation(s)
- Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| |
Collapse
|