1
|
Wang X, Peng Y, Zheng J, Li WDZ. Diversified Reactivity of Triphenylphosphine: Reinvestigation of the Phosphine-Mediated Reductive Condensation Approach for the Synthesis of Substituted Furans. J Org Chem 2024; 89:12795-12799. [PMID: 39151054 DOI: 10.1021/acs.joc.4c01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
A reinvestigation of "Phosphine-Mediated Reductive Condensation of γ-Acyloxy Butynoates: A Diversity Oriented Strategy for the Construction of Substituted Furans" (J. Am. Chem. Soc. 2004, 126, 4118-4119) revealed different chemoselectivity of triphenylphosphine in the reactions with the γ-acyloxy butynoate substrates of varying substitution patterns/electronics. Furthermore, the electronics of the triaryl phosphine reagent could be tuned to trap a putative intermediate such as A, leading to the semihydrogenation of propiolamide substrates.
Collapse
Affiliation(s)
- Xi Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, School of Life Science and Engineering, Southwest Jiaotong University,, Chengdu 610031, P. R. China
| | - Yu Peng
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jianfeng Zheng
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Wei-Dong Z Li
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
2
|
Zhou T, Zheng A, Huo L, Li C, Tan H, Wang S, Chen H. Total syntheses of ericifolione and its analogues via a biomimetic inverse-electron-demand Diels-Alder reaction. Chem Commun (Camb) 2021; 58:270-273. [PMID: 34878459 DOI: 10.1039/d1cc06361h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Driven by bioinspiration and appreciation of the structure of ericifolione, a biomimetic tautomerization/intermolecular inverse-electron-demand hetero Diels-Alder reaction cascade sequence promoted by sodium acetate to rapidly construct sterically hindered dihydropyran scaffolds was established, which allowed the first straightforward biomimetic total syntheses of ericifolione and its analogues with high simplicity. Moreover, this methodology set the stage for the preparation of relevant natural products or derivatives.
Collapse
Affiliation(s)
- Tingting Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China. .,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Anquan Zheng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China. .,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Luqiong Huo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Changgeng Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China.
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China.
| | - Sasa Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China. .,Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Centre for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
| | - Huiyu Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China. .,School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| |
Collapse
|