Battula S, Bhumannagari H, Ambadipudi SSSSS, Andugulapati SB, Nayani K. Diastereoselective Cascade Double Michael Addition to Access Bridged Coumarins, Oxindoles and Spirooxindoles: A Sustainable Strategy for Synthesis of Anticancer Molecules.
ChemMedChem 2025;
20:e202400946. [PMID:
39686658 DOI:
10.1002/cmdc.202400946]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
An efficient and concise synthesis of highly functionalized bridged coumarins has been developed through a diastereoselective double Michael addition reaction of p-quinols with various 4-hydroxy coumarins under catalyst-free conditions in H2O-DMSO (8 : 2). The method has been applied to oxindoles for the synthesis of a variety of bridged-oxindoles and bridged-spiroxindoles in presence of a DABCO base using H2O-EtOH (8 : 2) as solvent medium. The strategy is simple, highly atom economical as there is no by-product and environmentally benign (E-factor=0.1-0.9). The synthesized compounds were screened against triple-negative breast cancers and found that bridged coumarin (3 a) and oxindole (5 d) compounds exhibit potent anti-cancer activity at 6.6 and 8.8 μM (IC50) concentrations respectively. Further analysis revealed that 3 a and 5 d caused elevated early and total apoptosis by arresting the MDA-MB-468 cells in G2/M phase of the cell cycle. Overall, our results demonstrate that bridged coumarin (3 a) and oxindole (5 d) compounds-based approach attenuates the cancer progression and may pave a path for the translational outcome.
Collapse