1
|
Sixto-López Y, Mendoza-Figueroa HL, Landeros-Rivera B, Camacho-Molina A, Correa-Basurto J. Molecular dynamics, docking and quantum calculations reveal conformational changes influenced by CYP271A amino acid mutations related to cerebrotendinous xanthomatosis. Sci Rep 2025; 15:10229. [PMID: 40133480 PMCID: PMC11937267 DOI: 10.1038/s41598-025-93966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Cerebrotendinous xanthomatosis (CTX) is an autosomal recessive lipid disorder caused by a deficiency in CYP27A1, the first enzyme in the bile acid biosynthesis pathway. CYP27A1 catalyzes the 7α-hydroxylation of cholesterol, playing an important role in cholesterol homeostasis. CTX leads to progressive neurological dysfunction, including cognitive impairment, epilepsy, peripheral neuropathy, and movement disorders. Missense mutations in CYP27A1 disrupt its activity, particularly at the heme binding region and the adrenodoxin-binding site. This study examined the structural effects of seven-point mutations in CYP27A1 using molecular dynamic (MD) simulations. Both mutant and wild-type (WT) proteins were modeled to observe their structural behavior. Additionally, by combining MD simulations, docking, and quantum calculations cholesterol binding was studied in WT and mutant proteins. Results indicated that mutations altered cholesterol binding mode, preventing it from adopting the correct position in the catalytic site. The substrate access channel in mutants became wider, shallower, or closed. The interaction between the isopropyl group of cholesterol and the heme was found to be crucial for the hydroxylation capacity of CYP27A1, as this interaction was only present in the cholesterol-WT complex.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja s/n, 18071, Granada, Spain.
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Plan de San Luis y Díaz Mirón, Instituto Politécnico Nacional, Ciudad de México, 11340, México.
| | - Humberto L Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Plan de San Luis y Díaz Mirón, Instituto Politécnico Nacional, Ciudad de México, 11340, México
| | - Bruno Landeros-Rivera
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, Ciudad de México, México
| | | | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Plan de San Luis y Díaz Mirón, Instituto Politécnico Nacional, Ciudad de México, 11340, México.
| |
Collapse
|
2
|
Rocha KML, Nascimento ÉCM, de Jesus RCC, Martins JBL. In Silico Molecular Modeling of Four New Afatinib Derived Molecules Targeting the Inhibition of the Mutated Form of BCR-ABL T315I. Molecules 2024; 29:4254. [PMID: 39275102 PMCID: PMC11397288 DOI: 10.3390/molecules29174254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Four afatinib derivatives were designed and modeled. These derivatives were compared to the known tyrosine-kinase inhibitors in treating Chronic Myeloid Leukemia, i.e., imatinib and ponatinib. The molecules were evaluated through computational methods, including docking studies, the non-covalent interaction index, Electron Localization and Fukui Functions, in silico ADMET analysis, QTAIM, and Heat Map analysis. The AFA(IV) candidate significantly increases the score value compared to afatinib. Furthermore, AFA(IV) was shown to be relatively similar to the ponatinib profile when evaluating a range of molecular descriptors. The addition of a methylpiperazine ring seems to be well distributed in the structure of afatinib when targeting the BCR-ABL enzyme, providing an important hydrogen bond interaction with the Asp381 residue of the DFG-switch of BCR-ABL active site residue and the AFA(IV) new chemical entities. Finally, in silico toxicity predictions show a favorable index, with some molecules presenting the loss of the irritant properties associated with afatinib in theoretical predictions.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/chemistry
- Afatinib/chemistry
- Afatinib/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Molecular Docking Simulation
- Humans
- Models, Molecular
- Computer Simulation
- Mutation
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Hydrogen Bonding
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Imidazoles/chemistry
- Imidazoles/pharmacology
- Pyridazines
Collapse
Affiliation(s)
- Kelvyn M. L. Rocha
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.M.L.R.); (É.C.M.N.); (R.C.C.d.J.)
| | - Érica C. M. Nascimento
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.M.L.R.); (É.C.M.N.); (R.C.C.d.J.)
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Rafael C. C. de Jesus
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.M.L.R.); (É.C.M.N.); (R.C.C.d.J.)
| | - João B. L. Martins
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.M.L.R.); (É.C.M.N.); (R.C.C.d.J.)
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasília, Brasília 70910-900, DF, Brazil
| |
Collapse
|
3
|
Andrade-Collantes E, Landeros-Rivera B, Sixto-López Y, Bello-Rios C, Contreras-García J, Tiznado JAG, Pedroza-Torres A, Camacho-Pérez B, Montaño S. Molecular insight into endosulfan degradation by Ese protein from Arthrobacter: Evidence-based structural bioinformatics and quantum mechanical calculations. Proteins 2024; 92:302-313. [PMID: 37864384 DOI: 10.1002/prot.26610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/22/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023]
Abstract
Endosulfan is an organochlorine insecticide widely used for agricultural pest control. Many nations worldwide have restricted or completely banned it due to its extreme toxicity to fish and aquatic invertebrates. Arthrobacter sp. strain KW has the ability to degrade α, β endosulfan and its intermediate metabolite endosulfate; this degradation is associated with Ese protein, a two-component flavin-dependent monooxygenase (TC-FDM). Employing in silico tools, we obtained the 3D model of Ese protein, and our results suggest that it belongs to the Luciferase Like Monooxygenase family (LLM). Docking studies showed that the residues V59, V315, D316, and T335 interact with α-endosulfan. The residues: V59, T60, V315, D316, and T335 are implicated in the interacting site with β-endosulfan, and the residues: H17, V315, D316, T335, N364, and Q363 participate in the interaction with endosulfate. Topological analysis of the electron density by means of the Quantum Theory of Atoms in Molecules (QTAIM) and the Non-Covalent Interaction (NCI) index reveals that the Ese-ligands complexes are formed mainly by dispersive forces, where Cl atoms have a predominant role. As Ese is a monooxygenase member, we predict the homodimer formation. However, enzymatic studies must be developed to investigate the Ese protein's enzymatic and catalytic activity.
Collapse
Affiliation(s)
- Ernesto Andrade-Collantes
- Laboratorio de Modelado Molecular y Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, Culiacán, Sinaloa, Mexico
| | - Bruno Landeros-Rivera
- CNRS, Laboratoire de Chimie Théorique, LCT, Sorbonne Université, Paris, France
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, Ciudad de México, Mexico
| | - Yudibeth Sixto-López
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Ciresthel Bello-Rios
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Guerrero, Mexico
| | | | - José Antonio Garzón Tiznado
- Laboratorio de Modelado Molecular y Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, Culiacán, Sinaloa, Mexico
| | - Abraham Pedroza-Torres
- Cátedra CONACyT-Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Beni Camacho-Pérez
- Instituto Tecnológico y de Estudios Superiores de Occidente, Periférico Sur Manuel Gómez Morín, Tlaquepaque, Jalisco, Mexico
| | - Sarita Montaño
- Laboratorio de Modelado Molecular y Bioinformática, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, Culiacán, Sinaloa, Mexico
| |
Collapse
|
4
|
Tettevi EJ, Kuevi DNO, Sumabe BK, Simpong DL, Maina MB, Dongdem JT, Osei-Atweneboana MY, Ocloo A. In Silico Identification of a Potential TNF-Alpha Binder Using a Structural Similarity: A Potential Drug Repurposing Approach to the Management of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9985719. [PMID: 38221912 PMCID: PMC10787656 DOI: 10.1155/2024/9985719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Introduction Alzheimer's disease (AD) is a neurodegenerative disorder with no conclusive remedy. Yohimbine, found in Rauwolfia vomitoria, may reduce brain inflammation by targeting tumour necrosis factor-alpha (TNFα), implicated in AD pathogenesis. Metoserpate, a synthetic compound, may inhibit TNFα. The study is aimed at assessing the potential utility of repurposing metoserpate for TNFα inhibition to reduce neuronal damage and inflammation in AD. The development of safe and effective treatments for AD is crucial to address the growing burden of the disease, which is projected to double over the next two decades. Methods Our study repurposed an FDA-approved drug as TNFα inhibitor for AD management using structural similarity studies, molecular docking, and molecular dynamics simulations. Yohimbine was used as a reference compound. Molecular docking used SeeSAR, and molecular dynamics simulation used GROMACS. Results Metoserpate was selected from 10 compounds similar to yohimbine based on pharmacokinetic properties and FDA approval status. Molecular docking and simulation studies showed a stable interaction between metoserpate and TNFα over 100 ns (100000 ps). This suggests a reliable and robust interaction between the protein and ligand, supporting the potential utility of repurposing metoserpate for TNFα inhibition in AD treatment. Conclusion Our study has identified metoserpate, a previously FDA-approved antihypertensive agent, as a promising candidate for inhibiting TNFα in the management of AD.
Collapse
Affiliation(s)
- Edward Jenner Tettevi
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, University of Ghana, Legon, Accra, P.O. Box LG 25, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, School of Biological Science, University of Ghana, Legon, Accra, P.O. Box LG 25, Ghana
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research-Water Research Institute, Accra, P.O. Box M 32, Ghana
| | - Deryl Nii Okantey Kuevi
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research-Water Research Institute, Accra, P.O. Box M 32, Ghana
| | - Balagra Kasim Sumabe
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research-Water Research Institute, Accra, P.O. Box M 32, Ghana
| | - David Larbi Simpong
- Department of Medical Laboratory Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Mahmoud B. Maina
- Serpell Laboratory, Sussex Neuroscience, School of Life Sciences, University of Sussex, UK
- Biomedical Science Research and Training Centre, College of Medical Sciences, Yobe State University, Damaturu, Nigeria
| | - Julius T. Dongdem
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale Campus, Ghana
| | - Mike Y. Osei-Atweneboana
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research-Water Research Institute, Accra, P.O. Box M 32, Ghana
- CSIR-College of Science and Technology, 2nd CSIR Close, Airport Residential Area, Behind Golden Tulip Hotel, Greater Accra Region, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, University of Ghana, Legon, Accra, P.O. Box LG 25, Ghana
| |
Collapse
|
5
|
Adhav V, Saikrishnan K. The Realm of Unconventional Noncovalent Interactions in Proteins: Their Significance in Structure and Function. ACS OMEGA 2023; 8:22268-22284. [PMID: 37396257 PMCID: PMC10308531 DOI: 10.1021/acsomega.3c00205] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Proteins and their assemblies are fundamental for living cells to function. Their complex three-dimensional architecture and its stability are attributed to the combined effect of various noncovalent interactions. It is critical to scrutinize these noncovalent interactions to understand their role in the energy landscape in folding, catalysis, and molecular recognition. This Review presents a comprehensive summary of unconventional noncovalent interactions, beyond conventional hydrogen bonds and hydrophobic interactions, which have gained prominence over the past decade. The noncovalent interactions discussed include low-barrier hydrogen bonds, C5 hydrogen bonds, C-H···π interactions, sulfur-mediated hydrogen bonds, n → π* interactions, London dispersion interactions, halogen bonds, chalcogen bonds, and tetrel bonds. This Review focuses on their chemical nature, interaction strength, and geometrical parameters obtained from X-ray crystallography, spectroscopy, bioinformatics, and computational chemistry. Also highlighted are their occurrence in proteins or their complexes and recent advances made toward understanding their role in biomolecular structure and function. Probing the chemical diversity of these interactions, we determined that the variable frequency of occurrence in proteins and the ability to synergize with one another are important not only for ab initio structure prediction but also to design proteins with new functionalities. A better understanding of these interactions will promote their utilization in designing and engineering ligands with potential therapeutic value.
Collapse
Affiliation(s)
- Vishal
Annasaheb Adhav
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
6
|
Oliveira BGD. Why much of Chemistry may be indisputably non-bonded? SEMINA: CIÊNCIAS EXATAS E TECNOLÓGICAS 2023. [DOI: 10.5433/1679-0375.2022v43n2p211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this compendium, the wide scope of all intermolecular interactions ever known has been revisited, in particular giving emphasis the capability of much of the elements of the periodic table to form non-covalent contacts. Either hydrogen bonds, dihydrogen bonds, halogen bonds, pnictogen bonds, chalcogen bonds, triel bonds, tetrel bonds, regium bonds, spodium bonds or even the aerogen bond interactions may be cited. Obviously that experimental techniques have been used in some works, but it was through the theoretical methods that these interactions were validate, wherein the QTAIM integrations and SAPT energy partitions have been useful in this regard. Therefore, the great goal concerns to elucidate the interaction strength and if the intermolecular system shall be total, partial or non-covalently bonded, wherein this last one encompasses the most majority of the intermolecular interactions what leading to affirm that chemistry is debatably non-bonded.
Collapse
|
7
|
Winiewska-Szajewska M, Czapinska H, Kaus-Drobek M, Fricke A, Mieczkowska K, Dadlez M, Bochtler M, Poznański J. Competition between electrostatic interactions and halogen bonding in the protein-ligand system: structural and thermodynamic studies of 5,6-dibromobenzotriazole-hCK2α complexes. Sci Rep 2022; 12:18964. [PMID: 36347916 PMCID: PMC9641685 DOI: 10.1038/s41598-022-23611-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
CK2 is a member of the CMGC group of eukaryotic protein kinases and a cancer drug target. It can be efficiently inhibited by halogenated benzotriazoles and benzimidazoles. Depending on the scaffold, substitution pattern, and pH, these compounds are either neutral or anionic. Their binding poses are dictated by a hydrophobic effect (desolvation) and a tug of war between a salt bridge/hydrogen bond (to K68) and halogen bonding (to E114 and V116 backbone oxygens). Here, we test the idea that binding poses might be controllable by pH for ligands with near-neutral pKa, using the conditionally anionic 5,6-DBBt and constitutively anionic TBBt as our models. We characterize the binding by low-volume Differential Scanning Fluorimetry (nanoDSF), Isothermal Calorimetry (ITC), Hydrogen/Deuterium eXchange (HDX), and X-ray crystallography (MX). The data indicate that the ligand pose away from the hinge dominates for the entire tested pH range (5.5-8.5). The insensitivity of the binding mode to pH is attributed to the perturbation of ligand pKa upon binding that keeps it anionic in the ligand binding pocket at all tested pH values. However, a minor population of the ligand, detectable only by HDX, shifts towards the hinge in acidic conditions. Our findings demonstrate that electrostatic (ionic) interactions predominate over halogen bonding.
Collapse
Affiliation(s)
- Maria Winiewska-Szajewska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.12847.380000 0004 1937 1290Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089 Warsaw, Poland
| | - Honorata Czapinska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Magdalena Kaus-Drobek
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Anna Fricke
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Kinga Mieczkowska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Michał Dadlez
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Matthias Bochtler
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jarosław Poznański
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Scheiner S, Michalczyk M, Zierkiewicz W. Involvement of Arsenic Atom of AsF 3 in Five Pnicogen Bonds: Differences between X-ray Structure and Theoretical Models. Molecules 2022; 27:6486. [PMID: 36235021 PMCID: PMC9572024 DOI: 10.3390/molecules27196486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Bonding within the AsF3 crystal is analyzed via quantum chemical methods so as to identify and quantify the pnicogen bonds that are present. The structure of a finite crystal segment containing nine molecules is compared with that of a fully optimized cluster of the same size. The geometries are qualitatively different, with a much larger binding energy within the optimized nonamer. Although the total interaction energy of a central unit with the remaining peripheral molecules is comparable for the two structures, the binding of the peripherals with one another is far larger in the optimized cluster. This distinction of much stronger total binding within the optimized cluster is not limited to the nonamer but repeats itself for smaller aggregates as well. The average binding energy of the cluster rises quickly with size, asymptotically approaching a value nearly triple that of the dimer.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
9
|
Jena S, Dutta J, Tulsiyan KD, Sahu AK, Choudhury SS, Biswal HS. Noncovalent interactions in proteins and nucleic acids: beyond hydrogen bonding and π-stacking. Chem Soc Rev 2022; 51:4261-4286. [PMID: 35560317 DOI: 10.1039/d2cs00133k] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the noncovalent interactions (NCIs) among the residues of proteins and nucleic acids, and between drugs and proteins/nucleic acids, etc., has extraordinary relevance in biomolecular structure and function. It helps in interpreting the dynamics of complex biological systems and enzymatic activity, which is esential for new drug design and efficient drug delivery. NCIs like hydrogen bonding (H-bonding) and π-stacking have been researchers' delight for a long time. Prominent among the recently discovered NCIs are halogen, chalcogen, pnictogen, tetrel, carbo-hydrogen, and spodium bonding, and n → π* interaction. These NCIs have caught the imaginations of various research groups in recent years while explaining several chemical and biological processes. At this stage, a holistic view of these new ideas and findings lying scattered can undoubtedly trigger our minds to explore more. The present review attempts to address NCIs beyond H-bonding and π-stacking, which are mainly n → σ*, n → π* and σ → σ* type interactions. Five of the seven NCIs mentioned earlier are linked to five non-inert end groups of the modern periodic table. Halogen (group-17) bonding is one of the oldest and most explored NCIs, which finds its relevance in biomolecules due to the phase correction and inhibitory properties of halogens. Chalcogen (group 16) bonding serves as a redox-active functional group of different active sites of enzymes and acts as a nucleophile in proteases and phosphates. Pnictogen (group 15), tetrel (group 14), triel (group 13) and spodium (group 12) bonding does exist in biomolecules. The n → π* interactions are linked to backbone carbonyl groups and protein side chains. Thus, they are crucial in determining the conformational stability of the secondary structures in proteins. In addition, a more recently discovered to and fro σ → σ* type interaction, namely carbo-hydrogen bonding, is also present in protein-ligand systems. This review summarizes these grand epiphanies routinely used to elucidate the structure and dynamics of biomolecules, their enzymatic activities, and their application in drug discovery. It also briefs about the future perspectives and challenges posed to the spectroscopists and theoreticians.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Akshay Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Shubhranshu Shekhar Choudhury
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
10
|
Benito I, Gomila RM, Frontera A. On the energetic stability of halogen bonds involving metals: implications in crystal engineering. CrystEngComm 2022. [DOI: 10.1039/d2ce00545j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports a combined computational and experimental analysis of the ability of square planar d8 transition metal complexes to establish unconventional halogen bonding interactions with chloro-, bromo- and iodopentafluorobenzene...
Collapse
|
11
|
Michalczyk M, Zierkiewicz W, Wysokiński R, Scheiner S. Triel bonds within anion ···anion complexes. Phys Chem Chem Phys 2021; 23:25097-25106. [PMID: 34751289 DOI: 10.1039/d1cp04296c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of two anions to interact with one another is tested in the context of pairs of TrX4- homodimers, where Tr represents any of the triel atoms B, Al, Ga, In, or Tl, and X refers to a halogen substituent F, Cl, or Br. None of these pairs engage in a stable complex in the gas phase, but the situation reverses in water where the two monomers are held together by Tr⋯X triel bonds, complemented by stabilizing interactions between X atoms. Some of these bonds are quite strong, notably those involving TrF4-, with interaction energies surpassing 30 kcal mol-1. Others are very much weaker, with scarcely exothermic binding energies. The highly repulsive electrostatic interactions are counteracted by large polarization energies.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Rafał Wysokiński
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| |
Collapse
|
12
|
Biswal HS, Sahu AK, Galmés B, Frontera A, Chopra D. Se⋅⋅⋅O/S and S⋅⋅⋅O Chalcogen Bonds in Small Molecules and Proteins: A Combined CSD and PDB Study. Chembiochem 2021; 23:e202100498. [PMID: 34693623 PMCID: PMC9298333 DOI: 10.1002/cbic.202100498] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Indexed: 12/13/2022]
Abstract
The importance of selenium-centered noncovalent chalcogen bonds represented as Se⋅⋅⋅A (A=O/S) has been explored for short directional contacts in small molecules and proteins. In addition, S⋅⋅⋅O centered contacts have been analyzed. Computational analyses involving the quantitative assessment of the associated energetics, the molecular electrostatic potentials (MEP), and electron density derived topological parameters, namely, quantum theory of atom in molecules (QTAIM) analyses, and NBO (natural bond orbital) based calculations, have been performed to unequivocally establish the strength, stability, and attractive role of chalcogen bonds in the solid-state. This investigation has been performed in molecules from both the Cambridge Structural Database (CSD) and Protein Data Bank (PDB). Thus futuristic materials may be designed keeping in mind the significance of these interactions, including their relevance in biology.
Collapse
Affiliation(s)
- Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, Bhubaneswar, India.,Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Akshay Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, Bhubaneswar, India.,Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Bartomeu Galmés
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|