1
|
Gajbhiye SA, Patil MP. Breast cancer cell targeting of L-leucine-PLGA conjugated hybrid solid lipid nanoparticles of betulin via L-amino acid transport system-1. J Drug Target 2025:1-32. [PMID: 40317247 DOI: 10.1080/1061186x.2025.2500036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The aim of fabricating hybrid solid lipid nanoparticles (HSLN) was to enhance the delivery of betulin to triple negative beast cancer cells through the intravenous route via L-amino transporter system-1, using L-leucine-PLGA conjugate (Conj-HSLN) by hot high pressure homogenization method. Betulin (BN), having potent anticancer and antioxidant activity, faces challenges due to poor water solubility and permeability, affecting its bioavailability. The results revealed Conj-HSLN with particle size 318.3 ± 0.25 nm. The percent cumulative BN release from Conj-HSLN was 57.763%, 24h. The cytotoxicity study in MB-MDA-231 cell depicts, LD50 67.73 µg/ml in Conj-HSLN. Pharmacokinetics study reveals enhanced Cmax and half-life in Conj-HSLN (32.12 ± 0.25 µg/ml, 4.72 ± 0.53 h) than raw BN (1.31 ± 0.21 µg/ml, 7.54 ± 0.34 h). Enhanced distribution at tumor site (11.5967% ID, 2h) in Conj-HSLN signifies the role of L-leucine in the transport system. Pharmacodynamic study shows mean tumor volume of 765.3 ± 85.884, and 1450.01 ± 219.361 mm3 in Conj-HSLN, and BN respectively at 3rd week of treatment. Standardized uptake value attributed reduced glucose uptake, due to inhibited tumor growth and proliferation, confirmed tumor biomarkers assay, VEGF and Caspase-9. In conclusion, the targeted controlled release L-leucine conjugated-BN loaded HSLN is stable, safe, and effective against triple negative breast cancers.
Collapse
Affiliation(s)
- Shilpa A Gajbhiye
- MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nasik 422003, Maharashtra, India. Affiliated to Savitribai Phule Pune University, Pune
| | - Moreshwar P Patil
- MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nasik 422003, Maharashtra, India. Affiliated to Savitribai Phule Pune University, Pune
| |
Collapse
|
2
|
Moser AJ, Sutter PE, Chavez AM, Cruz SA, West JG. Mild Hydroalkylation of Terminal Olefins Via Decatungstate/Thiol Cooperative Photocatalysis. Org Lett 2025; 27:4529-4533. [PMID: 40269624 DOI: 10.1021/acs.orglett.5c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Here we report the use of a tetrabutylammonium decatungstate (TBADT)/thiol photocatalytic system for selective addition of acetone and other simple ketone, nitrile, and chlorocarbon functionalities to terminal olefins. This system avoids the use of energetic reagents such as peroxides and proceeds under mild conditions using Earth-abundant element catalysts, providing a sustainable approach to C-C bond formation using activated olefins. Initial exploration reveals that hydroalkylation of unactivated olefins is also possible, though in lower efficiency, and preliminary mechanistic experiments are consistent with a radical mechanism.
Collapse
Affiliation(s)
- Austin J Moser
- Department of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77005, United States
| | - Paige E Sutter
- Department of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77005, United States
| | - Alex M Chavez
- Department of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77005, United States
| | - Sebastian A Cruz
- Department of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77005, United States
| | - Julian G West
- Department of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Chen B, Feng TT, Zhou DG, Yang LJ. Mechanisms of C(sp 3)-H Functionalization of Acetonitrile or Acetone with Alkynes: A DFT Investigation. J Chem Inf Model 2025; 65:1953-1966. [PMID: 39912650 DOI: 10.1021/acs.jcim.4c02136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The mechanisms for the C(sp3)-H activation and addition reactions between acetonitrile (or acetone) and alkynes have been investigated with the M06-2X-D3/ma-def2-TZVP method and basis set. The SMD (solvation model based on solute electron density) model was applied to simulate the solvent effect. In the first and second reactions, 2-phenylbut-3-yn-2-ol reacted with acetonitrile and acetone, respectively. First, the C(sp3)-H activations of acetonitrile and acetone could be achieved by PhCOO• and t-BuO• radicals. Then, addition reactions converted 2-phenylbut-3-yn-2-ol into final products P1 and P2. Gibbs free energy surfaces of these two reactions suggest that blue lines would be the favorable paths with lower Gibbs energy barriers, and the terminal C atom of the C≡C bond is the best reactive site. Moreover, the analysis of the IRI (Interaction Region Indicator) reveals the Z- and E-configuration transformations. While in the third and fourth reactions, methyl(2-(phenylethynyl)phenyl)sulfane has interactions with acetonitrile and acetone via some paths, respectively. Gibbs free energy profiles show that the C10 atom, rather than the C11 atom, has priority, and the blue lines are favorable. Furthermore, the action mode of Na2HPO4 could reduce the energy barrier and benefit the reaction. vdW (van der Waals) interactions play an important role in the choice for the reactive site. In the fifth (or sixth) reaction, it happened between 1-(2-(methylthio)phenyl)-3-phenylprop-2-yn-1-one and acetontrile (or acetone) to yield the final product P5 (or P6). The computational results uncovered the blue line is the best path, and the choice for the reactive site depends on the vdW interactions, which reveals the origin of selectivity. In addition, the investigation for the byproducts have been carried out, and these can explain the reason that only the main product is produced. Both of those can agree with the experimental results. The localized orbital locator (LOL) isosurfaces, Laplacian bond order (LBO), electron density of the bond critical point (ρBCP), electron spin density isosurface graphs, and IRI graphs can be used to analyze the structure and reveal the reaction substances.
Collapse
Affiliation(s)
- Bin Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Tian-Tian Feng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Da-Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Li-Jun Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| |
Collapse
|
4
|
Singh AK, Rahaman A, Patel UKB, Patel TR, Bhai S, Ganguly B, Bhadra S. Copper catalyzed C(sp 3)-H/C(sp 3)-H cross-coupling of arylacetic acid equivalents with methylarenes via α-carbonyl radicals. Chem Commun (Camb) 2025; 61:2941-2944. [PMID: 39820634 DOI: 10.1039/d4cc06801g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Arylacetic acid equivalents bearing a pyridine group undergo C(sp3)-H/C(sp3)-H cross coupling with diverse methylarenes in the presence of a copper based catalyst system. The reaction proceeds via the formation of α-carbonyl radicals giving access to α,β-diarylpropionic acids. Preliminary study suggests that the catalyst system is capable of transforming arylbenzyl ketones into 1,2,3-triaryl ketones.
Collapse
Affiliation(s)
- Anupam Kumar Singh
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajijur Rahaman
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Upendra Kumar Brijmohan Patel
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.
| | - Tulsi R Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Analytical and Environmental Science Division and Centralized Instrument Facilities, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Surjit Bhai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Analytical and Environmental Science Division and Centralized Instrument Facilities, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Bishwajit Ganguly
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Analytical and Environmental Science Division and Centralized Instrument Facilities, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Sukalyan Bhadra
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Li J, Xu J, Chen B, Pang Q, Shen J, Wang K, Zhang P. Merging Photoinduced Electron Transfer with Hydrogen Atom Transfer: Formal β-C(sp 3)-H Pyridination of Carbonyls. J Org Chem 2025; 90:1354-1366. [PMID: 39788895 DOI: 10.1021/acs.joc.4c02739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In this study, a novel approach that combines photoinduced electron transfer (ET) with hydrogen atom transfer (HAT) has been introduced for the selective β-C(sp3)-H pyridination of carbonyl compounds. This method is notable for its absence of transition metals and its ability to function under benign reaction conditions, resulting in a range of pyridinated carbonyl derivatives with consistently moderate to good yields. The significance of this technique is further underscored by its potential for the late-stage functionalization of pharmaceutically significant molecules. Mechanistic investigations confirmed that the reaction proceeds via a radical-mediated pathway.
Collapse
Affiliation(s)
- Jian Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Binbin Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Qing Pang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Li H, Lu D, Qian BY, Lin J, Zhang HJ. Direct Synthesis of K-Region Functionalized Polycyclic Aromatic Hydrocarbons via Twofold Intramolecular C-H/C-H Arylation. Org Lett 2024; 26:11140-11144. [PMID: 39661452 DOI: 10.1021/acs.orglett.4c04156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Functionalized polycyclic aromatic hydrocarbons (PAHs) are essential building blocks for the bottom-up fabrication of structurally uniform nanocarbons. Herein we report a simple and efficient synthetic method toward K-region hydroxy-functionalized PAHs via TEMPO-mediated twofold intramolecular C-H/C-H arylations of 1-biphenyl-2-yl-2-aryl-ethanone derivatives. This method achieves high yields and selectivity, synthesizing a variety of PAH frameworks, including pyrenes, chrysenes, benzo[c]phenanthrenes, and benzo[k]tetraphenes. Our results also demonstrate the potential of these compounds as valuable candidates for the selective construction of larger PAH structures.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Dandan Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Bai-Yang Qian
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
7
|
Zhang Z, Zhu Q, Pyle D, Zhou X, Dong G. Methyl Ketones as Alkyl Halide Surrogates: A Deacylative Halogenation Approach for Strategic Functional Group Conversions. J Am Chem Soc 2023; 145:21096-21103. [PMID: 37712624 PMCID: PMC11102776 DOI: 10.1021/jacs.3c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Alkyl halides are versatile precursors to access diverse functional groups (FGs). Due to their lability, the development of surrogates for alkyl halides is strategically important for complex molecule synthesis. Given the stability and ease of derivatization inherent in common alkyl ketones, here we report a deacylative halogenation approach to convert various methyl ketones to the corresponding alkyl chlorides, bromides, and iodides. The reaction is driven by forming an aromatic byproduct, i.e., 1,2,4-triazole, in which N'-methylpicolinohydrazonamide (MPHA) is employed to form a prearomatic intermediate and halogen atom-transfer (XAT) reagents are used to quench the alkyl radical intermediate. The reaction is efficient in yielding primary and secondary alkyl halides from a wide range of methyl ketones with broad FG tolerance. It also works for complex natural-product-derived and fluoro-containing substrates. In addition, one-pot conversions of methyl ketones to various other FGs and annulations with alkenes and alkynes through deacylative halogenation are realized. Moreover, an unusual iterative homologation of alkyl iodides is also demonstrated. Finally, mechanistic studies reveal an intriguing double XAT process for the deacylative iodination reaction, which could have implications beyond this work.
Collapse
Affiliation(s)
- Zining Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Qi Zhu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel Pyle
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Xukai Zhou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Palani P, Arumugam A, Raja D, Muthu K, Senadi GC. Photoredox-catalyzed 1,2-oxo-alkylation of vinyl arenes with 1,3-diketones: an approach to 1,4-dicarbonyls via C-C activation. Chem Commun (Camb) 2023; 59:11433-11436. [PMID: 37671608 DOI: 10.1039/d3cc02366d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A mild and inexpensive approach to synthesising a series of 1,4-diketones in moderate to excellent yields via 1,2-oxo alkylation has been developed using fluorescein as a photocatalyst and air as an oxidant. The key features include (i) varied substrate scope (39 examples); (ii) good functional group tolerance; (iii) unsymmetrical 1,4-dicarbonyls; (iv) late-stage functionalization of thymol and ibuprofen derivatives; and (v) the synthetic expansion to 5- and 6-membered N-, O- and S-containing heterocycles.
Collapse
Affiliation(s)
- Pushbaraj Palani
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ajithkumar Arumugam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India.
| | - Dineshkumar Raja
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India.
| | - Kesavan Muthu
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India
| | - Gopal Chandru Senadi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
9
|
Visible Light‐Promoted Fluorescein/Ni‐Catalyzed Synthesis of Bis‐(β‐Dicarbonyls) using Olefins as a Methylene Bridge Synthon. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Li JZ, Mei L, Yu XC, Wang LT, Cai XE, Li T, Wei WT. C-centered radical-initiated cyclization by directed C(sp 3)–H oxidative functionalization. Org Chem Front 2022. [DOI: 10.1039/d2qo01128j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C(sp3)–H functionalization is attracting constant attention. This review emphasizes C-centered radicals initiated cyclization strategies by directed C(sp3)–H oxidative functionalization since 2012.
Collapse
Affiliation(s)
- Jiao-Zhe Li
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lan Mei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xuan-Chi Yu
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Tao Wang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xue-Er Cai
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Wen-Ting Wei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
11
|
Yi R, Li J, Wang D, Wei W. Radical Cascade Cyclization Involving C(sp 3)—H Functionalization of Unactivated Cycloalkanes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Gao Q, Sun Z, Wu M, Guo Y, Han X, Yan J, Ha MN, Le QM, Xu Y. Di- tert-butyl peroxide as an effective two-carbon unit in oxidative radical cyclization toward 7-methylazolo[1,5- a]pyrimidines. Org Chem Front 2022. [DOI: 10.1039/d2qo00381c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An unexpected oxidative radical cyclization with DTBP as the C2 cyclic unit enables the assembly of privileged 7-methylazolo[1,5-a]pyrimidines.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Zhenhua Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Manman Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Jufen Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Minh Ngoc Ha
- VNU Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Quynh Mai Le
- Department of Plant Science, Faculty of Biology, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Yongtao Xu
- School of Medical Engineering, Henan International Joint Laboratory of Neural Information analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|