1
|
Tian DY, Zhao WP, Xu ZY. Mechanism and Origin of Nickel-Catalyzed Decarbonylative Construction of C(sp 2)-C(sp 3) Bonds from Carboxylic Acids and Their Derivatives. J Org Chem 2025; 90:4808-4818. [PMID: 40163894 DOI: 10.1021/acs.joc.4c02521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Nickel-catalyzed arylation of carboxylic acids provides a ligand-controlled chemoselectivity-switchable method for the construction of C(sp2)-C(sp3) bonds. Here, we employed density functional theory to provide a detailed understanding of the mechanism and origin of nickel-catalyzed ligand-controlled carbonyl transformation. This reaction generates decarbonylation products through oxidative addition, activation of C-C bonds, decarbonylation, binding of alkyl radicals with Ni(III) complexes, and final reduction elimination step. The activation of C-C bonds in aromatic carboxylate esters is more favorable than C-O bond activation because of the interaction between the nickel catalyst and the π orbitals of the substrate's aromatic moiety during C-C bond activation. The induction effect of the ligand and the carbonyl group together determines the transfer tendency of the carbonyl group.
Collapse
Affiliation(s)
- Dan-Yan Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei-Peng Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zheng-Yang Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
2
|
Jin Z, Li Q, Zhu M, Zhang Y, Yan X, Zhou X. Palladium-catalyzed carbon-carbon bond cleavage of primary alcohols: decarbonylative coupling of acetylenic aldehydes with haloarenes. RSC Adv 2025; 15:7826-7831. [PMID: 40070398 PMCID: PMC11895861 DOI: 10.1039/d5ra00357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
In the current work, a palladium-catalyzed C-C bond cleavage reaction of primary alcohols has been developed. This transformation was characterized by a broad substrate scope, superior functional group tolerance, and high efficiency for selective C-C bond cleavage and was then followed by alkynyl-aryl cross coupling. Mechanism studies indicated that the propargyl alcohols underwent β-H elimination to form aldehydes rather than having undergone β-C elimination. The corresponding aldehyde intermediates then proceeded through a decarbonylation and coupling reaction with haloarenes to yield diarylacetylenes.
Collapse
Affiliation(s)
- Zewei Jin
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Qiang Li
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Maoshuai Zhu
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yanqiong Zhang
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xufei Yan
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu 610041 P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
3
|
Tao Q, Zheng Y, Li Q, Long Y, Wang J, Jin Z, Zhou X. Aerobic Reconstruction of Amines to Amides: A C-N/C-C Bond Cleavage Approach. Org Lett 2024; 26:11224-11229. [PMID: 39680724 DOI: 10.1021/acs.orglett.4c04366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Herein, an aerobic reconstruction of amines to amides via C(sp3)-N bond and C(sp2)-C(sp3) bond cleavage is described. This method features a metal-free reaction, insensitivity to oxygen or moisture, and ambient air as the terminal oxidant. Preliminary mechanistic studies suggest that the reaction pathway of amine oxidation, followed by imine exchange and Beckmann rearrangement, is involved.
Collapse
Affiliation(s)
- Qinyue Tao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yanling Zheng
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Qiang Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yang Long
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jing Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610064, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zewei Jin
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
4
|
Tao Q, Zhang H, Ye R, Zhang Y, Long Y, Zhou X. Palladium-Catalyzed Synthesis of β-Alkynyl Ketones via Selective 1,3-Alkynyl Migration of α,α-Disubstituted Allylic Alcohols. J Org Chem 2024; 89:13208-13214. [PMID: 39213500 DOI: 10.1021/acs.joc.4c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, a palladium-catalyzed 1,3-alkynyl migration of allylic alcohol for the synthesis of β-alkynyl ketone was described. This intramolecular rearrangement reaction demonstrated an enhanced reactivity compared to the traditional intermolecular alkynylation by circumventing the dimerization of alkynes, exhibiting a specific selectivity toward β-alkynyl elimination. Moreover, this reaction featured wide substrate scope, good functional group tolerance, and 100% atom economy.
Collapse
Affiliation(s)
- Qinyue Tao
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Haoxiang Zhang
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Runyou Ye
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yanqiong Zhang
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yang Long
- School of Pharmacy, North Sichuan Medical College, 55 Dongshun Road, Nanchong 637000, P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
5
|
Gu YW, Chen M, Deng W, Xu ZY. Computational Exploration of 1,2-Carboamine Carbonylation Catalyzed by Nickel. J Org Chem 2024; 89:4484-4495. [PMID: 38470436 DOI: 10.1021/acs.joc.3c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nickel-catalyzed carbonylation of alkenes is a stereoselective and regioselective method for the synthesis of amide compounds. Theoretical predictions with density functional theory calculations revealed the mechanism and origin of stereoselectivity and regioselectivity for the nickel-catalyzed carbonylation of norbornene. The carbonylation reaction proceeds through oxidative addition, migration insertion of alkenes, and subsequent reduction elimination to afford cis-carbonylation product. The C-N bond activation of amides is unfavorable because the oxidative addition ability of the C-C bond is stronger than that of the C-N bond. The determining step of stereoselectivity is the migratory insertion of the strained olefin. The structural analysis shows that steroselectivity is controlled by the steric hindrance of methyl groups to olefins and substituents to IMes in ligands.
Collapse
Affiliation(s)
- Yi-Wen Gu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, PR China
| | - Man Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, PR China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, PR China
| | - Zheng-Yang Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai201418, PR China
| |
Collapse
|
6
|
Parra-García S, Ballester-Ibáñez M, García-López JA. Pd-Catalyzed Formal [2 + 2]-Retrocyclization of Cyclobutanols via 2-Fold Csp 3-Csp 3 Bond Cleavage. J Org Chem 2024; 89:882-886. [PMID: 38175808 PMCID: PMC10804411 DOI: 10.1021/acs.joc.3c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
In this work, we describe the unexpected 2-fold Csp3-Csp3 bond cleavage suffered by cyclobutanols in the presence of a catalytic amount of Pd(OAc)2 and promoted by the bulky biaryl JohnPhos ligand. Overall, the sequential cleavage of a strained and an unstrained Csp3-Csp3 bond leads to the formal [2 + 2]-retrocyclization products, namely, styrene and acetophenone derivatives. This procedure might enable the use of cyclobutanols as masked acetyl groups, resisting harsh conditions in organic synthesis.
Collapse
Affiliation(s)
- Sergio Parra-García
- Grupo de Química Organometálica,
Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain
| | - Marina Ballester-Ibáñez
- Grupo de Química Organometálica,
Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain
| | - José-Antonio García-López
- Grupo de Química Organometálica,
Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
7
|
Ishikawa S, Togashi R, Ueda R, Onodera S, Kochi T, Kakiuchi F. Rhodium-Catalyzed β-Acylalkylation of Allylbenzene Derivatives with Allyl Alcohols via C-C Bond Cleavage. J Org Chem 2023. [PMID: 36787647 DOI: 10.1021/acs.joc.2c02776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We report here a deallylative β-acylalkylation reaction of allylbenzene derivatives with allyl alcohols in the presence of Cp*Rh catalysts. Allylbenzenes possessing pyridyl and pyrazolyl directing groups were converted to β-aryl ketones via the cleavage of C(aryl)-C(allyl) bonds. Synthesis of a quinoline derivative from a β-aryl ketone product bearing a pyrazolyl group was also achieved.
Collapse
Affiliation(s)
- Soya Ishikawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ryo Togashi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ryosuke Ueda
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shunsuke Onodera
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
8
|
Paul S, Ghodake BM, Bhattacharya AK. Late-Stage C(sp 2 )-H Arylation of Artemisinic Acid and Arteannuin B: Effect of Olefin Migration Towards Synthesis of C-13 Arylated Artemisinin Derivatives. Chem Asian J 2023; 18:e202300162. [PMID: 36867394 DOI: 10.1002/asia.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/01/2023] [Indexed: 03/04/2023]
Abstract
In recent years, C-H bond functionalization has emerged as a pivotal tool for late-stage functionalization of complex natural products for the synthesis of potent biologically active derivatives. Artemisinin and its C-12 functionalized semi-synthetic derivatives are well-known clinically used anti-malarial drugs due to the presence of the essential 1,2,4-trioxane pharmacophore. However, in the wake of parasite developing resistance against artemisinin-based drugs, we conceptualized the synthesis of C-13 functionalized artemisinin derivatives as new antimalarials. In this regard, we envisaged that artemisinic acid could be a suitable precursor for the synthesis of C-13 functionalized artemisinin derivatives. Herein, we report C-13 arylation of artemisinic acid, a sesquiterpene acid and our attempts towards synthesis of C-13 arylated artemisinin derivatives. However, all our efforts resulted in the formation of a novel ring-contracted rearranged product. Additionally, we have extended our developed protocol for C-13 arylation of arteannuin B, a sesquiterpene lactone epoxide considered to be the biogenetic precursor of artemisinic acid. Indeed, the synthesis of C-13 arylated arteannuin B renders our developed protocol to be effective in sesquiterpene lactone as well.
Collapse
Affiliation(s)
- Sayantan Paul
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201 002, India
| | - Balaji M Ghodake
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201 002, India
| | - Asish K Bhattacharya
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201 002, India
| |
Collapse
|
9
|
Hu Z, Wang Y, Ma P, Wang J, Liu G. Decarbonylative cycloaddition of 1 H-indene-1,2,3-trione and norbornene via rhodium( i)-catalyzed carbon–carbon bond cleavage. NEW J CHEM 2022. [DOI: 10.1039/d2nj01708c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2,3-Dihydro-1H-inden-1-one derivatives were synthesized by a [5+2−2] decarbonylative cycloaddition of 1H-indene-1,2,3-trione and norbornene via rhodium(i) catalyzed direct carbon–carbon bond cleavage.
Collapse
Affiliation(s)
- Zhenzhu Hu
- Department of Chemistry, College of Science, Tianjin University, Tianjin, 300350, P. R. China
| | - Yuhang Wang
- Department of Chemistry, College of Science, Tianjin University, Tianjin, 300350, P. R. China
| | - Peng Ma
- Department of Chemistry, College of Science, Tianjin University, Tianjin, 300350, P. R. China
| | - Jianhui Wang
- Department of Chemistry, College of Science, Tianjin University, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 30072, P. R. China
| | - Guiyan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic–Organic hybrid Functional Material Chemistry; College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| |
Collapse
|