1
|
Das P, Mondal S, Goswami S, Mondal A, Das P, Ray S. A Completely Metal-Free Protocol for Oxidative Desulfitative C-N Coupling Reaction in Non-Basic Condition. Chem Asian J 2025; 20:e202401575. [PMID: 40045101 DOI: 10.1002/asia.202401575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/23/2025] [Indexed: 03/20/2025]
Abstract
A metal free oxidative desulfitative C-N coupling reaction through activation of latent thiol group using hypervalent iodine reagent is being reported in eco-friendly solvent ethanol. Here, the thio-amide group present in 5-alkylidene-rhodanine has been utilized as latent thiol functionality and C-N coupling with amines is realized. The reaction occurs evading the use of metal catalysts, inert atmosphere, high temperature or microwave heating, and strong base which is normally required for metal catalyzed C-N coupling reaction. Pertinently, here poorly nucleophilic aromatic amines react very efficiently. Desulfitative C-N coupling involving free thiol moiety and poorly nucleophilic aromatic amines in metal free condition has never been accomplished in one step, without requiring high temperature microwave heating or strong bases. The reaction occurs at just 50 °C in few hours under ambient atmosphere. Moreover, here no H2S is released in the environment, since solid sulphur is precipitated out as side product, making this protocol environmentally friendly. Metal free condition, low temperature, use of non-toxic solvent and reagent, prevention of the release of H2S in the environment make this protocol very much environmentally friendly and highly suitable for C-N coupling in a sustainable way.
Collapse
Affiliation(s)
- Partha Das
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Souvik Mondal
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Subhajit Goswami
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Aritra Mondal
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Paramita Das
- Department of Chemistry, Asutosh College, 92 S P Mukherjee Road, Kolkata, 700026, India
| | - Suman Ray
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700073, India
| |
Collapse
|
2
|
Rahman P, Chakraborty N, Patel BK, Rajbongshi KK. NaI-mediated α-keto-acylation of NH-sulfoximines with aryl methyl ketones. Org Biomol Chem 2025. [PMID: 40162884 DOI: 10.1039/d5ob00166h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A room-temperature NaI-mediated oxidative sulfoximidation of aryl methyl ketones to synthesize α-keto-N-acyl sulfoximines has been disclosed. This metal- and base-free NH-sulfoximidation is facilitated by tert-butyl hydroperoxide (TBHP) as the oxidant, affording α-ketoamides with good functional group tolerance, broad substrate scope, and scalability. Mechanistic investigations indicate the intermediacy of radicals and highlight molecular oxygen's significance as the oxygen source.
Collapse
Affiliation(s)
- Parbin Rahman
- Department of Chemistry, Handique Girls' College, Guwahati, 781001, Assam, India
| | - Nikita Chakraborty
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Kamal K Rajbongshi
- Department of Chemistry, Handique Girls' College, Guwahati, 781001, Assam, India
- Department of Chemistry, Cotton University, Guwahati, 781001, Assam, India.
| |
Collapse
|
3
|
Limjirawatthana S, Ploypradith P, Ruchirawat S, Theppitak C, Ieawsuwan W. Hypervalent Iodine(III)-Mediated Oxidative Cyclization of Exo-Cyclic Ene-Carbamate to Tetrahydroisoquinoline-Oxazol-2(3H)-one Derivatives. Chem Asian J 2025:e202401754. [PMID: 39989257 DOI: 10.1002/asia.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 02/25/2025]
Abstract
The new development of a transition-metal-free method for the synthesis of THIQ-oxazol-2(3H)-one motif from exo-cyclic ene-carbamates by using hypervalent iodine as an oxidant is reported. Various functional groups substituted on the aryl rings of the ene-carbamate substrates as well as the N- and S-heterocyclic substrates afforded the corresponding THIQ-oxazol-2(3H)-one products in up to 91 % yield. Moreover, the synthetic utility was highlighted for the synthesis of phthalide-THIQ natural product, (±)-corlumine.
Collapse
Affiliation(s)
- Suphaporn Limjirawatthana
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
| | - Poonsakdi Ploypradith
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Institution Office of the Permanent Secretary (OPS), Ministry of Higher Education Science, Research and Innovation (MHESI), Bangkok, 10400, Thailand
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Institution Office of the Permanent Secretary (OPS), Ministry of Higher Education Science, Research and Innovation (MHESI), Bangkok, 10400, Thailand
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
| | - Chatphorn Theppitak
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
| | - Winai Ieawsuwan
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Institution Office of the Permanent Secretary (OPS), Ministry of Higher Education Science, Research and Innovation (MHESI), Bangkok, 10400, Thailand
| |
Collapse
|
4
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
5
|
Mondal S, Sati R, Hashim M, Dash R, Nishad CS, Banerjee B. Metal-Free Synthesis of Pharmaceutically Relevant Sulfonylureas via Direct Reaction of Sulfonamides with Amides. J Org Chem 2024; 89:13179-13191. [PMID: 39196632 DOI: 10.1021/acs.joc.4c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
A metal-free process has been developed for the sustainable synthesis of medicinally important sulfonylureas in one pot via the direct reaction of sulfonamides with amides in green solvent (DMC). The reaction proceeded efficiently at room temperature, and the products were obtained in good to excellent yields. The use of readily accessible, inexpensive, and environmentally benign starting materials and reagents, metal-free mild reaction conditions, wide substrate scope, tolerance to air and moisture, operational simplicity, and good atom economy are the salient features of this reaction protocol. Gram-scale synthesis of antidiabetic drugs tolbutamide and chlorpropamide in excellent yields further revealed the practical utility of this procedure. Additionally, the synthetic value of this straightforward method is showcased by the late-stage modification of drug molecules, including drug-drug conjugation with good yields. Preliminary mechanistic studies indicated the in situ generation of an isocyanate intermediate, which further reacts with sulfonamide to form sulfonylurea. As compared to other related methods reported for sulfonylurea synthesis, the current method obviates the requirement of traditional multistep protocols involving isolation of hazardous isocyanates and avoids the use of toxic phosgene.
Collapse
Affiliation(s)
- Sahil Mondal
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Rakhi Sati
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Muhammed Hashim
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Rageshree Dash
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | | | - Biplab Banerjee
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
6
|
Natarajan P, Subramaniam SV, Peruncheralathan S. Organocatalytic Dearomatization of 5-Aminopyrazoles: Synthesis of 4-Hydroxypyrazolines. J Org Chem 2024; 89:10258-10271. [PMID: 38989804 DOI: 10.1021/acs.joc.4c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Dearomatization is a fundamental chemical reaction that affords complex three-dimensional heterocyclic frameworks. We disclose the first organocatalytic dearomatization of 5-aminopyrazoles, which yields a range of structurally diversified C4-hydroxylated pyrazolines with yields of ≤95% in <1.5 h at room temperature. This catalytic process is achieved using in situ-generated hypervalent iodine. The method also yields a spirolactone via an intramolecular dearomatization process. Furthermore, we demonstrate that substrate-directed reduction of the resulting iminopyrazoline leads to 4,5-difunctionalized pyrazoline as a single diastereomer. Mechanistic studies suggest that the reaction proceeds through a dearomatized cationic intermediate.
Collapse
Affiliation(s)
- Pradeep Natarajan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda 752050, Odisha, India
| | - Subhashini V Subramaniam
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda 752050, Odisha, India
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda 752050, Odisha, India
| |
Collapse
|
7
|
Subramaniam SV, Singh B, Pradeep N, Peruncheralathan S. PIFA-mediated intramolecular N-arylation of 2-aminoquinoxalines to afford indolo[2,3- b]quinoxaline derivatives. Org Biomol Chem 2024; 22:5803-5808. [PMID: 38946202 DOI: 10.1039/d4ob00812j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
We present the PIFA-mediated intramolecular N-arylation of 2-aminoquinoxalines at room temperature for the first time. This method provides a wide range of indolo[2,3-b]quinoxalines in good to excellent yields within a short time. The C-H bond functionalization occurs without the need for an inert atmosphere or additives. Additionally, a double C-H bond functionalization was observed, where the first reaction forms a C-N bond (N-arylation) and the second forms a C-O bond, yielding an acetal-functionalized product. Mechanistic investigations suggest that the C-H bond functionalization proceeds through an ionic mechanism, whereas acetal functionalization follows a radical pathway. This method extends to the derivation of indoloquinoxalines, including the target compound BIQMCz.
Collapse
Affiliation(s)
- Subhashini V Subramaniam
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Badal Singh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Natarajan Pradeep
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| |
Collapse
|
8
|
Zhang TB, Guan XD, Gao Y, Lu SC, Li BL. Metal- and light-free decarboxylative direct C-H alkylation of heteroarenes at room temperature. Org Biomol Chem 2024; 22:3439-3443. [PMID: 38591416 DOI: 10.1039/d4ob00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
This study reports a metal- and light-free decarboxylative C-H alkylation of heteroarenes at room temperature. The reaction generates various primary, secondary, and tertiary alkyl radicals and functionalizes seven different privileged scaffolds widely present in bioactive molecules. During this process, one equivalent of hypervalent iodine(III) carboxylates (HICs) plays dual roles as an alkyl radical precursor and an oxidant.
Collapse
Affiliation(s)
- Tong-Bo Zhang
- Harbin Zhenbao Pharmaceutical Co., Ltd, No. 8 First Yantai Road, Jizhong District, Haping Road, Development Zone Harbin, Heilongjiang 150060/CN, P. R. China
| | - Xi-Dong Guan
- National Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan 250117, P. R. China
| | - Yan Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Shi-Chao Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng District, P. R. China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China
| | - Bing-Long Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan 250117, P. R. China
| |
Collapse
|
9
|
Doobary S, Di Tommaso EM, Postole A, Inge AK, Olofsson B. Structure-reactivity analysis of novel hypervalent iodine reagents in S-vinylation of thiols. Front Chem 2024; 12:1376948. [PMID: 38487782 PMCID: PMC10937425 DOI: 10.3389/fchem.2024.1376948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
The transition-metal free S-vinylation of thiophenols by vinylbenziodoxolones (VBX) constituted an important step forward in hypervalent iodine-mediated vinylations, highlighting the difference to vinyliodonium salts and that the reaction outcome was influenced by the substitution pattern of the benziodoxolone core. In this study, we report several new classes of hypervalent iodine vinylation reagents; vinylbenziodazolones, vinylbenziodoxolonimine and vinyliodoxathiole dioxides. Their synthesis, structural and electronic properties are described and correlated to the S-vinylation outcome, shedding light on some interesting facets of these reagents.
Collapse
Affiliation(s)
- Sayad Doobary
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Alexandru Postole
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - A. Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Berit Olofsson
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Milzarek TM, Ramirez NP, Liu XY, Waser J. One-pot synthesis of functionalized bis(trifluoromethylated)benziodoxoles from iodine(I) precursors. Chem Commun (Camb) 2023; 59:12637-12640. [PMID: 37791867 DOI: 10.1039/d3cc04525k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Bis(trifluoromethylated)benziodoxoles (Bx) are broadly used cyclic hypervalent iodine reagents due to their stability and unique chemical properties. However, current methods to access them require several steps and long reaction times, making their synthesis tedious. Herein, a direct one-pot synthesis of bis(trifluoromethylated) Bx reagents from iodine(I) precursors is reported, enabling the synthesis of functionalized reagents.
Collapse
Affiliation(s)
- Tobias M Milzarek
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Nieves P Ramirez
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Xing-Yu Liu
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Ou C, Cai Y, Ma Y, Zhang H, Ma X, Liu C. Aliphatic Sulfonyl Fluoride Synthesis via Decarboxylative Fluorosulfonylation of Hypervalent Iodine(III) Carboxylates. Org Lett 2023; 25:6751-6756. [PMID: 37656922 DOI: 10.1021/acs.orglett.3c02652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
We disclose herein a photocatalytic decarboxylative fluorosulfonylation reaction of various hypervalent iodine(III) carboxylates in combination with 1,4-diazabicyclo[2.2.2]octane-bis(sulfur dioxide) adduct as a sulfonyl source and KHF2 as a desirable fluorine source via a radical sulfur dioxide insertion and fluorination strategy. A one-pot photocatalytic decarboxylative fluorosulfonylation reaction of various carboxylic acids mediated by PhI(OAc)2 was realized, as well. Notably, this transformation can be performed under heating conditions without the need for catalysts.
Collapse
Affiliation(s)
- Caiyun Ou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yinxia Cai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yuyang Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Haozhen Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
12
|
Nishad CS, Suman P, Saha H, Banerjee B. Visible-Light-Induced Metal- and Photocatalyst-Free Radical Cascade Cyclization of Cinnamamides for Synthesis of Functionalized Dihydroquinolinones. J Org Chem 2023. [PMID: 37463356 DOI: 10.1021/acs.joc.3c00987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Visible-light-promoted metal- and photocatalyst-free radical cascade cyclization of cinnamamides with α-oxocarboxylic acids is described for sustainable synthesis of diverse pharmaceutically important dihydroquinolinone scaffolds in one pot under mild conditions. The decarboxylative cascade cyclization proceeded efficiently at room temperature without the need for expensive photocatalysts such as Ir or Ru complexes, which indicates the practicability and environmentally benign nature of this protocol. Preliminary mechanistic studies reveal that the blue LED irradiation efficiently cleaves the I-O bond of the hypervalent iodine reagent PhI(O2CCOAr)2 formed through ligand exchange between iodobenzene diacetate and arylglyoxylic acid to initiate the cascade reaction. The synthetic value of this operationally simple and energy-efficient method is further demonstrated by late-stage functionalization of drug molecules in excellent yields.
Collapse
Affiliation(s)
| | - Pallav Suman
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Himadri Saha
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Biplab Banerjee
- Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
13
|
Sakkani N, Jha DK, Sadiq N, Zhao JCG. Organocatalytic synthesis of β-enaminyl radicals as single-electron donors for phenyliodine(III) dicarboxylates: direct one-pot alkylation-aminoxidation of styrenes. Org Biomol Chem 2023; 21:761-767. [PMID: 36594169 DOI: 10.1039/d2ob01826h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A direct one-pot alkylation-aminoxidation of styrene derivatives was achieved using in situ-generated alkyl and N-oxyl radicals. The corresponding O-alkylated hydroxylamine derivatives were obtained in moderate to good yields. The reaction features the generation of the alkyl radicals from phenyliodine(III) dicarboxylates via an organocatalytic process, the use of phenyliodine(III) dicarboxylates as the source of the alkyl radicals and oxidants for the generation of N-oxyl radicals, and the first generation of the β-enaminyl radicals via a HAT process and their use as single-electron donors.
Collapse
Affiliation(s)
- Nagaraju Sakkani
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| | - Dhiraj Kumar Jha
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| | - Nouraan Sadiq
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| | - John C-G Zhao
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| |
Collapse
|
14
|
Levitre G, Granados A, Molander GA. Sustainable Photoinduced Decarboxylative Chlorination Mediated by Halogen Atom Transfer. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:560-565. [PMID: 37588672 PMCID: PMC10427136 DOI: 10.1039/d2gc04578h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Chlorinated organic backbones constitute important components in existing biologically active chemicals, and they are extraordinary useful intermediates in organic synthesis. Herein, an operationally simple and sustainable halodecarboxylation protocol via halogen-atom transfer (XAT) as a key step is presented. The method merges a metal-free photoredox system with (diacetoxyiodo)benzene (PIDA) as a hypervalent iodine reagent using 1,2-dihaloethanes as halogen sources to afford haloalkanes in an efficient manner. The sustainability of this protocol is highlighted by an important waste recovery protocol as well as by atom economy and carbon efficiency parameters.
Collapse
Affiliation(s)
- Guillaume Levitre
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories 231 S. 34th Street, Philadelphia, PA 19104-6323 (USA)
| | - Albert Granados
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories 231 S. 34th Street, Philadelphia, PA 19104-6323 (USA)
| | - Gary A Molander
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories 231 S. 34th Street, Philadelphia, PA 19104-6323 (USA)
| |
Collapse
|
15
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
16
|
Electrophilic cyclization of reticuline-type alkaloids in flow via o-quinol intermediates. J Flow Chem 2023. [DOI: 10.1007/s41981-022-00256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Zhang J, Wang T, Qian J, Zhang Y, Zhang J. Ultrasound-promoted three-component halogenation-azaheteroarylation of alkenes involving carbon-halogen and carbon-carbon bond formation. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Sihag M, Soni R, Rani N, Kinger M, Kumar Aneja D. Recent Synthetic Applications of Hypervalent Iodine Reagents. A Review in Three Installments: Installment I. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Monika Sihag
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Rinku Soni
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Neha Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| |
Collapse
|
19
|
Golub TP, Abazid AH, Nachtsheim BJ, Merten C. Structure Elucidation of
In Situ
Generated Chiral Hypervalent Iodine Complexes via Vibrational Circular Dichroism (VCD). Angew Chem Int Ed Engl 2022; 61:e202204624. [PMID: 35570718 PMCID: PMC10084129 DOI: 10.1002/anie.202204624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/23/2022]
Abstract
The structure of in situ generated chiral aryl-λ3 -iodanes obtained under oxidative reaction conditions was not yet observable with experimental techniques and their proposed structures are purely based on DFT calculations. Herein, we establish vibrational circular dichroism (VCD) spectroscopy as an experimental technique to verify DFT-calculated chiral iodane structures. Based on a chiral triazole-substituted iodoarene catalyst, we were able to elucidate a yet undescribed cationic chiral iodane as the most populated intermediate under oxidative conditions with a significant intramolecular N-I-interaction and no significant interactions with tosylate or m-chlorobenzoic acid as potential anionic ligands. Instead, aggregation of these substrates was found, which resulted in the formation of a non-coordinating anionic hydrogen bonded complex. The importance of VCD as a crucial experimental observable is further highlighted by the fact that our initial structural proposal, that was purely based on DFT calculations, could be falsified.
Collapse
Affiliation(s)
- Tino P. Golub
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Germany
| | - Ayham H. Abazid
- Universität Bremen Fachbereich 2—Biologie und Chemie, Institut für Organische und Analytische Chemie Germany
| | - Boris J. Nachtsheim
- Universität Bremen Fachbereich 2—Biologie und Chemie, Institut für Organische und Analytische Chemie Germany
| | - Christian Merten
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
20
|
Golub TP, Abazid AH, Nachtsheim BJ, Merten C. Strukturaufklärung eines chiralen
in situ
erzeugten hypervalentem Iod‐Komplex mittels VCD‐Spektroskopie. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tino P. Golub
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Deutschland
| | - Ayham H. Abazid
- Universität Bremen Fachbereich 2 – Biologie und Chemie, Institut für Organische und Analytische Chemie (Deutschland)
| | - Boris J. Nachtsheim
- Universität Bremen Fachbereich 2 – Biologie und Chemie, Institut für Organische und Analytische Chemie (Deutschland)
| | - Christian Merten
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
21
|
Pan L, Lee KM, Ke Z, Yeung YY. Application of a DIB/BBr 3 protocol in metal-free aryl coupling reactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj04478a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Efficient and metal-free cross-coupling of arenes has been developed. Inexpensive hypervalent iodine reagents (HIRs) diacetoxyl iodobenzene and BBr3 were used to in situ generate a non-symmetrical HIR as the active species.
Collapse
Affiliation(s)
- Liangkun Pan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ka-Mei Lee
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Zhihai Ke
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
| | - Ying-Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
22
|
Bhattacharjee S, Laru S, Hajra A. Hypervalent iodine( iii)-mediated oxidative dearomatization of 2 H-indazoles towards indazolyl indazolones. Org Biomol Chem 2022; 20:8893-8897. [DOI: 10.1039/d2ob01776h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We accomplished a [bis(trifluoroacetoxy)iodo]benzene mediated oxidative dearomatization of 2H-indazoles, obtaining a new family of N-1 indazolyl indazolone derivatives in good to excellent yields through C–N and C–O bond formations.
Collapse
Affiliation(s)
- Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| |
Collapse
|