1
|
Shen Y, Li Y, Yuan S, Shen J, Wang D, Zhang N, Niu J, Wang Z, Wang Z. Polyfunctional Arylamine Based Nanofiltration Membranes with Enhanced Aggressive Organic Solvents Resistance. NANO LETTERS 2024; 24:10169-10176. [PMID: 39109989 DOI: 10.1021/acs.nanolett.4c02403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Organic solvent nanofiltration (OSN) membranes with high separation performance and excellent stability in aggressive organic solvents are urgently desired for chemical separation. Herein, we utilized a polyfunctional arylamine tetra-(4-aminophenyl) ethylene (TAPE) to prepare a highly cross-linked polyamide membrane with a low molecular weight cut-off (MWCO) of 312 Da. Owing to its propeller-like conformation, TAPE formed micropores within the polyamide membrane and provided fast solvent transport channels. Importantly, the rigid conjugated skeleton and high connectivity between micropores effectively prevented the expansion of the polyamide matrix in aggressive organic solvents. The membrane maintained high separation performance even immersed in N,N-dimethylformamide for 90 days. Based on the aggregation-induced emission (AIE) effect of TAPE, the formation of polyamide membrane can be visually monitored by fluorescence imaging technology, which achieved visual guidance for membrane fabrication. This work provides a vital foundation for utilizing polyfunctional monomers in the interfacial polymerization reaction to prepare high-performance OSN membranes.
Collapse
Affiliation(s)
- Yun Shen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
| | - Shideng Yuan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Jingyu Niu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Ziming Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Zhining Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
2
|
Xin JH, Fan HY, Guo BB, Yang HC, Zhu CY, Zhang C, Xu ZK. Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes. Chem Commun (Camb) 2023; 59:13258-13271. [PMID: 37869905 DOI: 10.1039/d3cc04171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Interfacial polymerization is a well-known process to synthesize separation layers for thin film composite membranes at an immiscible organic liquid-aqueous liquid interface. The organic-aqueous interface determines the diffusion dynamics of monomers and the chemical environment for polymerization, exerting a critical influence on the formation of polymer thin films. This review summarizes recent advances in tailoring interfacial polymerization using interfaces beyond the conventional alkane-water interface to achieve high-performance separation films with designed structures. Diverse liquid-liquid interfaces are introduced for synthesizing separation films by adding co-solvents into the organic phase and/or the aqueous phase, respectively, or by replacing one of the liquid phases with other solvents. Innovative liquid-gel and liquid-gas interfaces are then summarized for the synthesis of polymer thin films for separation. Novel strategies to form reaction interfaces, such as spray-coating, are also presented and discussed. In addition, we discuss the details of how a physically or chemically patterned substrate affects interfacial polymerization. Finally, the potential of unconventional interfaces in interfacial polymerization is forecast with both challenges and opportunities.
Collapse
Affiliation(s)
- Jia-Hui Xin
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hong-Yu Fan
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Bian-Bian Guo
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Cheng-Ye Zhu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Chao Zhang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Meng X, Hao T, Zhang D, Zhao R, Liu H, Zhang P, Deng K. Polymerization-induced emission (PIE) of multifunctional polyamides synthesized by Ugi polymerization and targeted imaging of lysosomes. J Mater Chem B 2023; 11:2714-2726. [PMID: 36877240 DOI: 10.1039/d2tb02639b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In this paper, a series of polyamide derivatives (PAMs) containing morpholine groups were prepared by Ugi polymerization from dialdehyde, diacid, N-(2-aminoethyl)-morpholine and isonitrile compounds as novel multi-responsive fluorescent sensors. As non-conjugated light-emitting polymers, PAMs were endowed with unique polymerization-induced emission (PIE) performance at 450 nm by through-space conjugation (TSC) between heteroatoms and heterocycles. It was also found that PAMs exhibited reversible responses to the external temperature and pH values and became responsive fluorescent switches. In addition, PAMs can specifically recognize Fe3+ with a limit of detection (LOD) of 54 nM and the introduction of EDTA reversibly restores the fluorescence of the quenched PAMs-Fe3+ system. By virtue of thermosensitivity, PAMs are easily separated from the above system by changing the temperature above or below the lower critical solution temperature (LCST). It is worth noting that PIE-active PAMs with good biocompatibility can selectively accumulate in lysosomes due to the presence of morpholine groups, and its Pearson colocalization coefficient is as higher as 0.91. Furthermore, a PIE-active PAM was successfully used to track exogenous Fe3+ in lysosomes. In conclusion, these multi-functional PIE-active PAMs have higher potential applications in biomedical or environmental fields.
Collapse
Affiliation(s)
- Xue Meng
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Tingting Hao
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Da Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Ronghui Zhao
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
- Department of Clinical Pharmacy, Affiliated Hospital of Hebei University, Baoding, 071002, China
| | - Hongmei Liu
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Pengfei Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| | - Kuilin Deng
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
4
|
Szymaszek P, Tomal W, Świergosz T, Kamińska-Borek I, Popielarz R, Ortyl J. Review of quantitative and qualitative methods for monitoring photopolymerization reactions. Polym Chem 2023. [DOI: 10.1039/d2py01538b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Authomatic in-situ monitoring and characterization of photopolymerization.
Collapse
|
5
|
Ma ZY, Xue YR, Yang HC, Wu J, Xu ZK. Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Yu-Ren Xue
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jian Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Zhang A, Hao J, Hou S, Shi G, He Y, Cui Z, Liu M, Qiao X, Fu P, Pang X. In situ monitoring of photo-PISA via aggregation-induced emission (AIE) technology. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Guo BB, Zhu CY, Xu ZK. Surface and Interface Engineering for Advanced Nanofiltration Membranes. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2654-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|