1
|
Li D, Li D, Ke Z, Gu Q, Xu K, Chen C, Qian G, Liu G. Synthesis of colorless polyimides with high
T
g
and low coefficient of thermal expansion from benzimidazole diamine containing biamide. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20230055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Dongwu Li
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| | - Dandan Li
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| | - Zhao Ke
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| | - Qian Gu
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| | - Ke Xu
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| | - Chunhai Chen
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| | - Guangtao Qian
- Center for Civil Aviation Composites Donghua University Shanghai People's Republic of China
| | - Gang Liu
- Center for Advanced Low‐Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering Donghua University Shanghai People's Republic of China
| |
Collapse
|
2
|
Xiao Y, Lei X, Liu Y, Zhang Y, Ma X, Zhang Q. Double-Decker-Shaped Phenyl-Substituted Silsesquioxane (DDSQ)-Based Nanocomposite Polyimide Membranes with Tunable Gas Permeability and Good Aging Resistance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Xia X, He X, Zhang S, Zheng F, Lu Q. Short-Side-Chain Regulation of Colorless and Transparent Polyamide-Imides for Flexible Transparent Displays. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Tang J, Li W, Wang Z. Facile synthesis of soluble, self-crosslinkable and crystalline polyimides with ultrahigh thermal/chemical resistance. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Lian R, Lei X, Xiong G, Xiao Y, Zhang Q. Hyperbranched polysiloxane (
HBPSi
)‐based colorless copolyimide films with atomic oxygen (
AO
) erosion resistance. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruhe Lian
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an Shaanxi People's Republic of China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education Northwestern Polytechnical University Xi'an Shaanxi People's Republic of China
| | - Xingfeng Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an Shaanxi People's Republic of China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education Northwestern Polytechnical University Xi'an Shaanxi People's Republic of China
| | - Guo Xiong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an Shaanxi People's Republic of China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education Northwestern Polytechnical University Xi'an Shaanxi People's Republic of China
| | - Yuyang Xiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an Shaanxi People's Republic of China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education Northwestern Polytechnical University Xi'an Shaanxi People's Republic of China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an Shaanxi People's Republic of China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education Northwestern Polytechnical University Xi'an Shaanxi People's Republic of China
| |
Collapse
|
6
|
Ren X, Wang H, Du X, Qi H, Pan Z, Wang X, Dai S, Yang C, Liu J. Synthesis and Properties of Optically Transparent Fluoro-Containing Polyimide Films with Reduced Linear Coefficients of Thermal Expansion from Organo-Soluble Resins Derived from Aromatic Diamine with Benzanilide Units. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6346. [PMID: 36143653 PMCID: PMC9501536 DOI: 10.3390/ma15186346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Wholly aromatic polyimide (PI) films with good solution processability, light colors, good optical transparency, high storage modulus, and improved heat resistance were prepared and characterized. For this purpose, a multi-component copolymerization methodology was performed from a fluoro-containing dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), a rigid dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), and a fluoro-containing diamine, 2,2'-bis(trifluoromethyl)-4,4'-bis [4-(4-amino-3-methyl)benzamide]biphenyl (MABTFMB). One homopolymer, FPI-1 (6FDA-MABTFMB), and five copolymers, FPI-2~FPI-6, containing the BPDA units from 10 mol% to 50 mol% in the dianhydride moieties, were prepared, respectively. The derived PI resins showed good solubility in the polar aprotic solvents, such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc). The flexible PI films obtained by the solution casting procedure showed good optical properties with the transmittances higher than 74.0% at the wavelength of 450 nm. The PI films exhibited excellent thermal properties, including 5% weight loss temperatures (T5%) over 510 °C, together with glass transition temperatures (Tg) over 350.0 °C according to the peak temperatures of the loss modulus in dynamical mechanical analysis (DMA) measurements. The FPI-6 film also showed the lowest linear coefficient of thermal expansion (CTE) value of 23.4 × 10-6/K from 50 to 250 °C according to the thermomechanical analysis (TMA) measurements, which was obviously lower than that of FPI-1 (CTE = 30.6 × 10-6/K).
Collapse
Affiliation(s)
- Xi Ren
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Hanli Wang
- Shandong Huaxia Shenzhou New Material Co., Ltd., Zibo 256401, China
| | - Xuanzhe Du
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Haoran Qi
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Zhen Pan
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xiaolei Wang
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Shengwei Dai
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Changxu Yang
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Jingang Liu
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
7
|
Zhang Y, Zhou Y, Wang Z, Yan J. Colorless poly(amide‐imide) copolymers for flexible display applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.53082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuanhao Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Science Ningbo China
- Ningbo Solartron Technology Co., Ltd Ningbo China
| | - Yubo Zhou
- Ningbo Solartron Technology Co., Ltd Ningbo China
| | - Zhen Wang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Science Ningbo China
| | - Jingling Yan
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Science Ningbo China
| |
Collapse
|
8
|
Xu Y, Zhang M, Pang Y, Zheng T, Zhang L, Wang Z, Yan J. Colorless Polyimides from 2,2',3,3'-Biphenyltetracarboxylic Dianhydride and Fluorinated Diamines. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Li Q, Park SS, Ha CS, Yuan S, Shi L. Synthesis and characterization of an adamantane-based copolyimides with high transparency. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221097381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this work, a copolyimide (Co-PI) film with high transparency was prepared by the copolymerization of hexafluoroisopropylidene)diphthalic anhydride (6FDA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 2,2′-Bis(trifluoromethyl)benzidine (TFMB) and adamantane-1,3-diamine (DAA). The effects of DAA monomers on the optical, thermal, and mechanical properties of the co-PIs were discussed in detail. We found that the preparation of polyimide (PI) based on the combination of two dianhydrides and two diamines could obtain the co-PI film with excellent comprehensive performance due to the synergy between the -CF3 group, the aliphatic ring and the aromatic structure. Through the structure and composition optimization, the co-PI film with 1.30% DAA (Q3) has a Tg of 374oC, T5 higher than 530oC, T430 of 82% and the tensile strength higher than 145 MPa. These results indicate that the Co-PI films can be successfully utilized in the development of novel heat-resistant plastic substrates for the optoelectronic engineering applications.
Collapse
Affiliation(s)
- Qi Li
- Emerging Industries Institute, Shanghai University, Jiaxing, China
| | - Sung S Park
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Shuai Yuan
- Emerging Industries Institute, Shanghai University, Jiaxing, China
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai, China
| | - Liyi Shi
- Emerging Industries Institute, Shanghai University, Jiaxing, China
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Lei X, Xiong G, Xiao Y, Huang T, Xin X, Xue S, Zhang Q. High temperature shape memory poly(amide-imide)s with strong mechanical robustness. Polym Chem 2022. [DOI: 10.1039/d2py00739h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shape memory poly(amide-imide)s with strong mechanical robustness, outstanding heat resistance and low water uptake were fabricated.
Collapse
Affiliation(s)
- Xingfeng Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Guo Xiong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yuyang Xiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Tianhao Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Xiangze Xin
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
11
|
Xue S, Lei X, Xiao Y, Xiong G, Lian R, Xin X, Peng Y, Zhang Q. Highly Refractive Polyimides Derived from Efficient Catalyst-Free Thiol–Yne Click Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Xingfeng Lei
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yuyang Xiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Guo Xiong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Ruhe Lian
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Xiangze Xin
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yutian Peng
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| |
Collapse
|