1
|
Li J, Li J, Qiang H, Jiang J, Zhu Y. A general orthogonal functionalization strategy for tailoring zwitterionic polymers with adjustable isoelectric points. J Colloid Interface Sci 2025; 686:448-461. [PMID: 39908837 DOI: 10.1016/j.jcis.2025.01.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Zwitterionic polymers, bearing a pair of oppositely charged groups in their repeat units, have demonstrated significant promise in both biomedical and engineering fields. Tunability of isoelectric points (IEPs) is of great value for bio-applications as it relates to key properties such as the surface charge reversal behavior, biocompatibility and the affinity to biomacromolecules. However, zwitterionic polymers with adjustable IEPs are difficult to obtain due to the fixed combination of ion pairs such as carboxybetaine-, sulfobetaine- and phosphorylcholine-based structures. To address this issue, we present a general approach to tailor zwitterionic polymers with adjustable IEPs. By developing an orthogonal functionalization strategy with sequence-controlled alternating polyesters, a series of zwitterionic polymers featuring customizable ion pairs were synthesized. This strategy, which involves aza-Michael addition and thiol-ene reaction, enables precise control over the alternating sequence of cations and anions, thereby allowing the generation of customizable ion pairs in each repeat unit. By forming block copolyesters with a hydrophobic polycaprolactone block, these polymers self-assemble into nanoparticles with tunable IEPs (e.g., 6.03, 6.37, and 6.54) and surface-charge-reversal properties, responding to physiological (pH 7.4) and tumor microenvironment (pH 6.5 ∼ 6.9) conditions. Notably, PCL54-b-P(MA-alt-AGE-g-Pip/NAC)9 (PPS3) nanoparticles, with the optimal IEP values, exhibited remarkable efficacy in inhibiting murine melanoma tumors in vivo when loaded with curcumin. This innovative approach holds promise for developing biocompatible and biodegradable drug delivery systems with tailored properties for potential clinical applications.
Collapse
Affiliation(s)
- Jianrui Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804 China
| | - Jiahui Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804 China
| | - Hongru Qiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804 China
| | - Jiayun Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804 China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804 China.
| |
Collapse
|
2
|
Li Y, Scheerstra JF, Liu Y, Wauters AC, Wang J, Wu H, Patiño T, Llopis‐Lorente A, van Hest JCM, Abdelmohsen LKEA. Facile synthesis of rapamycin‐loaded PEG‐b‐PLA nanoparticles and their application in immunotherapy. JOURNAL OF POLYMER SCIENCE 2024; 62:2215-2230. [DOI: 10.1002/pol.20230941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 01/06/2025]
Abstract
AbstractPoly(ethylene glycol)‐block‐poly(lactide) (PEG‐b‐PLA) micro‐ and nanoparticles (NPs) have been intensively investigated for applications in biomedicine, due to their inherent biocompatibility and biodegradability, which allows them to be used as sustained release systems. Current methods for preparing PEG‐b‐PLA NPs typically require two different steps that include polymer synthesis and NP assembly, with the necessary intermediate polymer purification and the use of a variety of organic solvents in the process. In order to facilitate the biomedical application of PEG‐b‐PLA NPs, it is of great interest to develop a strategy to formulate the NPs in a simplified manner. Here, we report a straightforward method to construct PEG‐b‐PLA NPs through a sequential two‐step process without intermediate work‐up, which involves synthesizing the polymer in a water‐miscible organic solvent that is, N,N‐dimethylformamide (DMF), followed by addition of water to the polymer solution. In this way, large NPs (~600 nm) were prepared. We comprehensively characterized the NPs using turbidity studies, dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. We further demonstrated the ability of the NPs to encapsulate drugs, exemplified in the immunotherapeutic agent rapamycin, with relatively high encapsulation efficiency. In vitro drug release tests showed that rapamycin‐encapsulating NPs had comparable sustained‐release profiles at different pH conditions, highlighting the broad application window of our NP platform. Moreover, in vitro T cell suppression assays revealed that rapamycin‐loaded NPs exhibited similar inhibitory performance to free rapamycin on CD8+ cells at all rapamycin concentrations and on CD4+ cells at high and intermediate rapamycin concentrations, while the performance of the NPs was superior on CD4+ at low rapamycin concentration. Overall, this work provides a route for the scalable synthesis of biocompatible PEG‐b‐PLA NPs, which can be extended to other polymeric NPs, with potential in biomedical applications such as immunotherapy.
Collapse
Affiliation(s)
- Yudong Li
- Bio‐Organic Chemistry Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Jari F. Scheerstra
- Bio‐Organic Chemistry Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Yuechi Liu
- Bio‐Organic Chemistry Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Annelies C. Wauters
- Bio‐Organic Chemistry Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences, Radboud University Medical Center Nijmegen The Netherlands
- Division of Immunotherapy Oncode Institute, Radboud University Medical Center Nijmegen The Netherlands
| | - Jianhong Wang
- Bio‐Organic Chemistry Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Hanglong Wu
- Bio‐Organic Chemistry Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Tania Patiño
- Bio‐Organic Chemistry Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Antoni Llopis‐Lorente
- Bio‐Organic Chemistry Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Jan C. M. van Hest
- Bio‐Organic Chemistry Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Bio‐Organic Chemistry Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
3
|
Zhou J, Tang H, Wang R. Co-assembly of Amphiphilic Triblock Copolymers with Nanodrugs and Drug Release Kinetics in Solution. J Phys Chem B 2024; 128:2841-2852. [PMID: 38452254 DOI: 10.1021/acs.jpcb.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Polymeric vesicles present great potential in disease treatment as they can be featured as a structurally stable and easily functionalized drug carrier that can simultaneously encapsulate multiple drugs and release them on-demand. Based on the dissipative particle dynamics (DPD) simulation, the drug-loaded vesicles were designed by the co-assembly process of linear amphiphilic triblock copolymers and hydrophobic nanodrugs in solvents, and most importantly, the drug release behavior of drug-loaded vesicles were intensively investigated. The drug-loaded aggregates, such as vesicles, spherical micelles, and disk-like micelles, were observed by varying the size and concentration of nanodrugs and the length of the hydrophobic block. The distribution of nanodrugs in the vesicles was intensively analyzed. As the size of the nanodrugs increases, the localization of nanodrugs change from being unable to fully wrap in the vesicle wall to the uniform distribution and finally to the aggregation in the vesicles at the fixed concentration of nanodrugs. The membrane thickness of the drug-loaded polymeric vesicle can be increased, and the nanodrugs localized closer to the center of the vesicle by increasing the length of the hydrophobic block. The nanodrugs will be released from vesicles by varying the interactions between the nanodrug and the solvent or the hydrophobic block and the solvent, respectively. We found that the release kinetics conforms to the first-order kinetic model, which can be used to fit the cumulative release rate of nanodrugs over time. The results showed that increasing the size of nanodrugs, the length of hydrophobic block, and the interaction parameters between the hydrophobic block and the solvent will slow down the release rate of the nanodrug and change the drug release process from monophasic to biphasic release model.
Collapse
Affiliation(s)
- Junwei Zhou
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Tang
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rong Wang
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Gao Y, Gao C, Fan Y, Sun H, Du J. Physically and Chemically Compartmentalized Polymersomes for Programmed Delivery and Biological Applications. Biomacromolecules 2023; 24:5511-5538. [PMID: 37933444 DOI: 10.1021/acs.biomac.3c00826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Multicompartment polymersomes (MCPs) refer to polymersomes that not only contain one single compartment, either in the membrane or in the internal cavity, but also mimic the compartmentalized structure of living cells, attracting much attention in programmed delivery and biological applications. The investigation of MCPs may promote the application of soft nanomaterials in biomedicine. This Review seeks to highlight the recent advances of the design principles, synthetic strategies, and biomedical applications of MCPs. The compartmentalization types including chemical, physical, and hybrid compartmentalization are discussed. Subsequently, the design and controlled synthesis of MCPs by the self-assembly of amphiphilic polymers, double emulsification, coprecipitation, microfluidics and particle assembly, etc. are summarized. Furthermore, the diverse applications of MCPs in programmed delivery of various cargoes and biological applications including cancer therapy, antimicrobials, and regulation of blood glucose levels are highlighted. Finally, future perspectives of MCPs from the aspects of controlled synthesis and applications are proposed.
Collapse
Affiliation(s)
- Yaning Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Chenchen Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yirong Fan
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200072, China
| |
Collapse
|
5
|
Sun Q, Shi J, Sun H, Zhu Y, Du J. Membrane and Lumen-Compartmentalized Polymersomes for Biocatalysis and Cell Mimics. Biomacromolecules 2023; 24:4587-4604. [PMID: 37842883 DOI: 10.1021/acs.biomac.3c00726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Compartmentalization is a crucial feature of a natural cell, manifested in cell membrane and inner lumen. Inspired by the cellular structure, multicompartment polymersomes (MCPs), including membrane-compartmentalized polymersomes and lumen-compartmentalized polymersomes (polymersomes-in-polymersomes), have aroused great expectations for biological applications such as biocatalysis and cell mimics in the past decades. Compared with traditional polymersomes, MCPs have advantages in encapsulating multiple enzymes separately for multistep enzymatic cascade reactions. In this review, first, the design principles and preparation methods of membrane-compartmentalized and lumen-compartmentalized polymersomes are summarized. Next, recent advances of MCPs as nanoreactors and cell mimics to mimic subcellular organelles or artificial cells are discussed. Finally, the future research directions of MCPs are prospected.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Junqiu Shi
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
6
|
Koroleva M. Multicompartment colloid systems with lipid and polymer membranes for biomedical applications. Phys Chem Chem Phys 2023; 25:21836-21859. [PMID: 37565484 DOI: 10.1039/d3cp01984e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Multicompartment structures have the potential for biomedical applications because they can act as multifunctional systems and provide simultaneous delivery of drugs and diagnostics agents of different types. Moreover, some of them mimic biological cells to some extent with organelles as separate sub-compartments. This article analyses multicompartment colloidal structures with smaller sub-units covered with lipid or polymer membranes that provide additional protection for the encapsulated substances. Vesosomes with small vesicles encapsulated in the inner pools of larger liposomes are the most studied systems to date. Dendrimer molecules are enclosed by a lipid bilayer shell in dendrosomes. Capsosomes, polymersomes-in-polymer capsules, and cubosomes-in-polymer capsules are composed of sub-compartments encapsulated within closed multilayer polymer membranes. Janus or Cerberus emulsions contain droplets composed of two or three phases: immiscible oils in O/W emulsions and aqueous polymer or salt solutions that are separated into two or three phases and form connected droplets in W/O emulsions. In more cases, the external surface of engulfed droplets in Janus or Cerberus emulsions is covered with a lipid or polymer monolayer. eLiposomes with emulsion droplets encapsulated into a bilayer shell have been given little attention so far, but they have very great prospects. In addition to nanoemulsion droplets, solid lipid nanoparticles, nanostructured lipid carriers and inorganic nanoparticles can be loaded into eLiposomes. Molecular engineering of the external membrane allows the creation of ligand-targeted and stimuli-responsive multifunctional systems. As a result, the efficacy of drug delivery can be significantly enhanced.
Collapse
Affiliation(s)
- Marina Koroleva
- Mendeleev University of Chemical Technology, Miusskaya sq. 9, Moscow 125047.
| |
Collapse
|
7
|
Zhang X, Fan X. Discovery of unusual morphological evolution of A-graft-(B-block-C) graft terpolymers by tuning the length of B component. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Tan Z, Lan W, Mao X, Zhang L, Luo X, Xu J, Zhu J. Structure-Controlled Preparation of Multicompartment Micelles with Tunable Emission through Hydrodynamics-Dependent Self-Assembly in Microfluidic Chips. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13099-13106. [PMID: 34705469 DOI: 10.1021/acs.langmuir.1c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multicompartment micelles (MCMs) attracted much attention since they have subdivided domains that could be employed to encapsulate and transport diverse compounds simultaneously. Usually, preparation of MCMs relied on precise synthesis of block copolymers (BCPs) and elegant control of assembly kinetics, making it difficult to successively produce MCMs. Herein, we report a facile yet effective method for preparing MCMs by adjusting the hydrodynamics in microfluidic channels. It was found that well-defined MCMs were formed through hydrodynamics-dependent secondary assembly in microfluidic chips. By adjusting the flow diffusion process by varying the flow rate ratio and total flow rate, both the internal structure and size of MCMs could be effectively changed. A product diagram of micellar morphologies associated to the initial polymer concentration and flow rate ratio of water/BCPs solution was constructed. More interestingly, quantum dots (QDs) could be selectively loaded into different domains of the MCMs. Consequently, the Förster resonance energy transfer among QDs could be effectively suppressed. Thus, the emission spectrum of MCMs/QDs hybrid particles could be easily tuned by changing the ratio of QDs, showing great potential application in photonics and sensors.
Collapse
Affiliation(s)
- Zhengping Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Wei Lan
- School of Energy and Power Engineering, HUST, Wuhan 430074, China
| | - Xi Mao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xiaobing Luo
- School of Energy and Power Engineering, HUST, Wuhan 430074, China
| | - Jiangping Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
9
|
Hong X, Xu X, Liu Z, Liu S, Yu J, Wu M, Ma Y, Shuai Q. Hyaluronan-fullerene/AIEgen nanogel as CD44-targeted delivery of tirapazamine for synergistic photodynamic-hypoxia activated therapy. NANOTECHNOLOGY 2021; 32:465701. [PMID: 34325415 DOI: 10.1088/1361-6528/ac18da] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
The therapeutic effect of oxygen-concentration-dependent photodynamic therapy (PDT) can be diminished in the hypoxic environment of solid tumours, the effective solution to this problem is utilising hypoxic-activated bioreduction therapy (BRT). In this research, a biocompatible HA-C60/TPENH2nanogel which can specifically bind to CD44 receptor was developed for highly efficient PDT-BRT synergistic therapy. The nanogel was degradable in acidic microenvironments of tumours and facilitated the release of biological reduction prodrug tirapazamine (TPZ). Importantly, HA-C60/TPENH2nanogel produced reactive oxygen species and consumed oxygen content in the cell to activate TPZ, leading to higher cytotoxicity than the free TPZ did. The intracellular observation of nanogel indicated that the HA-C60/TPENH2nanogel was self-fluorescence for cell imaging. This study applied PDT-BRT to design smart HA-based nanogel with targeted delivery, pH response, and AIEgen feature for efficient cancer therapy.
Collapse
Affiliation(s)
- Xia Hong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | - Xiaomei Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | - Zhicheng Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | - Shupeng Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | - Jie Yu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | - Mingyuan Wu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | - Yuwei Ma
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| | - Qi Shuai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, People's Republic of China
| |
Collapse
|