1
|
Nicchio L, Amin HIM, Genualdo S, Protti S, Fagnoni M. Water Effect on the Photochemistry of Arylazo Sulfonates. J Org Chem 2025. [PMID: 40305221 DOI: 10.1021/acs.joc.5c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The effect of water on visible-light-driven generation of aryl radicals or aryl cations from colored shelf-stable arylazo sulfonates has been investigated. Photoinduced ionic and radical decomposition of these salts compete, depending on the media used. In organic solvents, light-induced homolysis of the N-S bond occurs, and the resulting aryl radical may be used to some extent for arylation reactions. On the contrary, in neat water, radical chemistry is prevented by an efficient photoheterolysis, and a reactive aryl cation is otherwise generated.
Collapse
Affiliation(s)
- Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de La Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Hawraz Ibrahim M Amin
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
- Department of Chemistry, College of Science, Salahaddin University-Erbil, 44001 Erbil, Iraq
| | - Stefano Genualdo
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
2
|
Chawla R, Singh AK, Dutta PK. Arylazo sulfones: multifaceted photochemical reagents and beyond. Org Biomol Chem 2024; 22:869-893. [PMID: 38196324 DOI: 10.1039/d3ob01599h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The photochemical action of arylazo sulfones under visible light irradiation has recently gained considerable attention for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. The inherent dyedauxiliary group (-N2SO2R) embedded in the reagent is responsible for the absorption of visible light even in the absence of a photocatalyst, additive or oxidant, leading to the generation of three different radicals, viz. aryl (carbon-centred), sulfonyl (sulphur-centred) and diazenyl (nitrogen-centred) radicals, under different reaction conditions. Encountering a reagent with such a versatile behaviour is quite rare, which makes arylazo sulfones a highly interesting class of compounds. The mild reaction conditions under which these reagents can operate are an added advantage. Recently, they are also being used as non-ionic photoacid generators (PAGs), electron acceptors, and hydrogen atom transfer (HAT) and imination reagents in a number of synthetic transformations. They have displayed substantial damaging effect on the structure of DNA in the presence of light which can lead to their use as phototoxic pharmaceuticals for cancer treatment. Moreover, their photochemistry is also being exploited in polymerization reactions (as photoinitiators) and in materials chemistry (surface modification).
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Atul K Singh
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Pradip K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
3
|
Mikra C, Mitrakas A, Ghizzani V, Katsani KR, Koffa M, Koukourakis M, Psomas G, Protti S, Fagnoni M, Fylaktakidou KC. Effect of Arylazo Sulfones on DNA: Binding, Cleavage, Photocleavage, Molecular Docking Studies and Interaction with A375 Melanoma and Non-Cancer Cells. Int J Mol Sci 2023; 24:1834. [PMID: 36768159 PMCID: PMC9915714 DOI: 10.3390/ijms24031834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
A set of arylazo sulfones, known to undergo N-S bond cleavage upon light exposure, has been synthesized, and their activity in the dark and upon irradiation towards DNA has been investigated. Their interaction with calf-thymus DNA has been examined, and the significant affinity observed (most probably due to DNA intercalation) was analyzed by means of molecular docking "in silico" calculations that pointed out polar contacts, mainly via the sulfonyl moiety. Incubation with plasmid pBluescript KS II revealed DNA cleavage that has been studied over time and concentration. UV-A irradiation considerably improved DNA damage for most of the compounds, whereas under visible light the effect was slightly lower. Moving to in vitro experiments, irradiation was found to slightly enhance the death of the cells in the majority of the compounds. Naphthylazosulfone 1 showed photo-disruptive effect under UV-A irradiation (IC50 ~13 μΜ) followed by derivatives 14 and 17 (IC50 ~100 μΜ). Those compounds were irradiated in the presence of two non-cancer cell lines and were found equally toxic only upon irradiation and not in the dark. The temporal and spatial control of light, therefore, might provide a chance for these novel scaffolds to be useful for the development of phototoxic pharmaceuticals.
Collapse
Affiliation(s)
- Chrysoula Mikra
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Achilleas Mitrakas
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Virginia Ghizzani
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Katerina R. Katsani
- Laboratory of Biochemistry and Molecular Virology, Molecular Biology and Genetics Department, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Maria Koffa
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | - Michael Koukourakis
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Konstantina C. Fylaktakidou
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Capurro P, Ricciardiello V, Lova P, Lambruschini C, Protti S, Basso A. Visible-Light-Driven Solventylation Strategy for Olefin Functionalization. ACS OMEGA 2022; 7:48564-48571. [PMID: 36591128 PMCID: PMC9798500 DOI: 10.1021/acsomega.2c07172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Amphiphilic aryl radicals generated upon visible light irradiation of arylazo sulfones have been exploited in the development of a solventylation strategy via hydrogen atom transfer (HAT). The present protocol succeeded in the versatile functionalization of various olefins with carbon-centered radicals deriving from acetone, acetonitrile, chloroform, methylene chloride, nitromethane, methyl acetate, and methyl formate under metal- and photocatalyst-free conditions. The direct addition of the aryl radicals onto the olefin substrates was suppressed under high dilution conditions.
Collapse
Affiliation(s)
- Pietro Capurro
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Valentina Ricciardiello
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Paola Lova
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Chiara Lambruschini
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Stefano Protti
- PhotoGreenLab,
Dipartimento di Chimica, Università
di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Andrea Basso
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
5
|
Degirmenci A, Yeter Bas G, Sanyal R, Sanyal A. “Clickable” Polymer Brush Interfaces: Tailoring Monovalent to Multivalent Ligand Display for Protein Immobilization and Sensing. Bioconjug Chem 2022; 33:1672-1684. [PMID: 36128725 PMCID: PMC9501913 DOI: 10.1021/acs.bioconjchem.2c00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Facile and effective functionalization of the interface
of polymer-coated
surfaces allows one to dictate the interaction of the underlying material
with the chemical and biological analytes in its environment. Herein,
we outline a modular approach that would enable installing a variety
of “clickable” handles onto the surface of polymer brushes,
enabling facile conjugation of various ligands to obtain functional
interfaces. To this end, hydrophilic anti-biofouling poly(ethylene
glycol)-based polymer brushes are fabricated on glass-like silicon
oxide surfaces using reversible addition–fragmentation chain
transfer (RAFT) polymerization. The dithioester group at the chain-end
of the polymer brushes enabled the installation of azide, maleimide,
and terminal alkene functional groups, using a post-polymerization
radical exchange reaction with appropriately functionalized azo-containing
molecules. Thus, modified polymer brushes underwent facile conjugation
of alkyne or thiol-containing dyes and ligands using alkyne–azide
cycloaddition, Michael addition, and radical thiol–ene conjugation,
respectively. Moreover, we demonstrate that the radical exchange approach
also enables the installation of multivalent motifs using dendritic
azo-containing molecules. Terminal alkene groups containing dendrons
amenable to functionalization with thiol-containing molecules using
the radical thiol–ene reaction were installed at the interface
and subsequently functionalized with mannose ligands to enable sensing
of the Concanavalin A lectin.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Gizem Yeter Bas
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
6
|
Di Terlizzi L, Martinelli A, Merli D, Protti S, Fagnoni M. Arylazo Sulfones as Nonionic Visible-Light Photoacid Generators. J Org Chem 2022; 88:6313-6321. [PMID: 35866712 DOI: 10.1021/acs.joc.2c01248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The selective visible-light-driven generation of a weak acid (sulfinic acid, in nitrogen-purged solutions) or a strong acid (sulfonic acid, in oxygen-purged solutions) by using shelf-stable arylazo sulfones was developed. These sulfones were then used for the green, smooth, and efficient photochemical catalytic protection of several (substituted) alcohols (and phenols) as tetrahydropyranyl ethers or acetals.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Angelo Martinelli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Daniele Merli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
7
|
Roider T, Frommknecht N, Höltzel A, Tallarek U. Device for automated screening of irradiation wavelength and intensity – investigation of the wavelength dependence of photoreactions with an arylazo sulfone in continuous flow. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00142j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A system allowing the automatic change of LED arrays (normalized to the number of emitted photons) is presented to study photochemical reactions in continuous flow for their wavelength dependence.
Collapse
Affiliation(s)
- Thomas Roider
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Norbert Frommknecht
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Alexandra Höltzel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|