1
|
Zeng Z, Zhang J, Gao Y, Song Y, Liu L, Zhu M, Ma W, Fu J, Miao D, Huang C, Xiong R. Bioadhesive First-Aid Patch with Rapid Hemostasis and High Toughness Designed for Sutureless Sealing of Acute Bleeding Wounds. Adv Healthc Mater 2025; 14:e2403412. [PMID: 39520362 DOI: 10.1002/adhm.202403412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
The global military and civilian sectors express widespread concern over the significant hemorrhage associated with various acute wounds. Such bleedings lead to numerous casualties in military confrontations, traffic accidents, and surgical injuries. Consequently, the rapid control of the bleedings, particularly for extensive and pressurized wounds, is crucial in first-aid situations. In this work, a double-layered bioadhesive patch that combines a superabsorbent adhesive hydrogel with a highly tough antibacterial polyurethane film, which is called as Bio-Patch, is proposed. The Bio-Patch demonstrates superior mechanical strength and forms robust bioadhesion to acute bleeding wounds. Furthermore, the Bio-Patch enables protecting against external Gram-negative and Gram-positive bacteria. Thanks to the double-layered structures having synergistic functions of stable barrier and robust adhesion, the Bio-Patch provides optimal wound sealing (burst strength exceeding 310 mmHg) both in vitro and in vivo. It also demonstrates superior hemostatic effects (less than 30 s) in vivo. This offers promising opportunities for rapid control of extensive and pressurized hemorrhage in first-aid clinical scenarios.
Collapse
Affiliation(s)
- Ziyuan Zeng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Jiaming Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Yige Gao
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Yuanyuan Song
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Luoming Liu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Miaomiao Zhu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Jiajun Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dongyang Miao
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| |
Collapse
|
2
|
Tan Y, Gu Q, Xu Q, Ji Z, Su C, Ling Z. Regulating natural galactomannan into composite hydrogels for improved adhesion, anti-swelling capability and efficient dye pollution removal. Int J Biol Macromol 2024; 279:135466. [PMID: 39250991 DOI: 10.1016/j.ijbiomac.2024.135466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Constructing bio-based composite hydrogel materials are receiving much interest, while regulating the interactions of the hydrogel components and integrating functions for multi-application meet various challenges. Herein, composite hydrogels were prepared by cross-linking of poly-acrylamide (PAM) and poly-N-[3-(Dimethylamino) propyl] acrylamide (PDMAPAA), assisted by natural galactomannan (GM) regulation. Even distribution and compatibility of GM in the three-dimensional materials were proved by a series of chemical and morphological characterizations, which favored the improvement of mechanical properties (~80 kPa) and flexibility. Besides, the hydrogels were well-connected with double networks of noncovalent intermolecular hydrogen bonding interactions and hydrophobic interactions, in addition to covalent-linked polymers. Due to great amount of inner hydrogen bond linkages, the hydrogels present satisfying anti-swelling capabilities (<15 %), exhibiting high potential for application in water treatment. Meanwhile, abundant surface functional groups provided possibilities to form interactive layer with the various substrates surface, exhibiting highly adhesive properties. Significant dyes adsorption capabilities were revealed on the hydrogels according to the electrostatic attraction with Congo red and hydrogen bond interactions with Brilliant green respectively. Thus, the proposed composite hydrogels integrated multi-functions due to the tuning the surface groups and cross-linking interactions, which provided deeper understanding on bio-based materials on fields of water treatment and environmental protection.
Collapse
Affiliation(s)
- Yang Tan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qihui Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
| | - Qingqing Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ji
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chen Su
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
He Y, Chen J, Qian Y, Wei Y, Wang C, Ye Z, Liu Y, Chen G. Organohydrogel based on cellulose-stabilized emulsion for electromagnetic shielding, flame retardant, and strain sensing. Carbohydr Polym 2022; 298:120132. [DOI: 10.1016/j.carbpol.2022.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
|
4
|
Lv M, Du Y, Zhang T, Du X, Yin X. Cassava Starch-Based Thermo-Responsive Pb(II)-Imprinted Material: Preparation and Adsorption Performance on Pb(II). Polymers (Basel) 2022; 14:828. [PMID: 35215742 PMCID: PMC8963116 DOI: 10.3390/polym14040828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Heavy metal pollution is currently an increasing threat to the ecological environment, and the development of novel absorbents with remarkable adsorption performance and cost-effectiveness are highly desired. In this study, a cassava starch-based Pb(II)-imprinted thermo-responsive hydrogel (CPIT) had been prepared by using cassava starch as the bio-substrate, N-isopropyl acrylamide (NIPAM) as the thermo-responsive monomer, and Pb(II) as the template ions. Later, a variety of modern techniques including FTIR, DSC, SEM, and TGA were employed to comprehensively analyze the characteristic functional groups, thermo-responsibility, morphology, and thermal stability of CPIT. The obtained material exhibited superior performance in adsorption of Pb(II) and its maximum adsorption capacity was high-up to 114.6 mg/g under optimized conditions. Notably, the subsequent desorption (regeneration) process was fairly convenient by simply rinsing with cold deionized water and the highest desorption efficiency could be achieved as 93.8%. More importantly, the adsorption capacity of regenerated CPIT still maintained 88.2% of the value of starting material even after 10 recyclings. In addition, the excellence of CPIT in selective adsorption of Pb(II) should also be highlighted as its superior adsorption ability (97.9 mg/g) over the other seven interfering metal ions.
Collapse
Affiliation(s)
| | | | | | - Xueyu Du
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (M.L.); (Y.D.); (T.Z.)
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China; (M.L.); (Y.D.); (T.Z.)
| |
Collapse
|