1
|
Chen Q, Yang R, Sheng W, Zhang K. A New Polycyclic Naphthoxazine Resin: Facile Synthesis, Characterization, Polymerization, and Thermal Properties of Its Corresponding Thermosets. Macromol Rapid Commun 2024; 45:e2400399. [PMID: 38867361 DOI: 10.1002/marc.202400399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/07/2024] [Indexed: 06/14/2024]
Abstract
A novel polycyclic naphthoxazine resin (NSA-thiq) is synthesized via N, O-acetal forming reaction between o-hydroxyl naphthaldehyde and 1,2,3,4-tetrahydroisoquinoline. The chemical structure of the monomer is investigated and confirmed by 1H and 13C NMR, Fourier-transform infrared (FT-IR) spectroscopy, and high-resolution mass spectrometry. Besides, the ring-opening polymerization behavior similar to ordinary benzoxazine resins is observed by differential scanning calorimetry (DSC) and in situ FT-IR analyses, leading to the formation of the phenolic cross-linked network. Notably, DSC thermograms indicate that the newly obtained polycyclic naphthoxazine resin exhibits much lower polymerization temperatures compared to many other reported benzoxazine or naphthoxazine resins. Moreover, the corresponding polybenzoxazine (poly(NSA-thiq)) shows comparable thermal stability in comparison with thermosets derived from monobenzoxazine resins. As a consequence of these unique performances, NSA-thiq is applied as a property modifier for a commercialized benzoxazine resin (BA-a). The glass transition temperature of copolymeric thermosets is enhanced without sacrificing too much thermal stability and heat resistance. Here, another series of naphthoxazine thermosetting resin is explored, which can provide more examples for constructing composites based on thermoset polymers.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Rui Yang
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Weichen Sheng
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Kan Zhang
- Institute of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
2
|
Yang R, Li N, Evans CJ, Yang S, Zhang K. Phosphaphenanthrene-Functionalized Benzoxazines Bearing Intramolecularly Hydrogen-Bonded Phenolic Hydroxyl: Synthesis, Structural Characterization, Polymerization Mechanism, and Property Investigation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Rui Yang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nan Li
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Corey J. Evans
- School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Shengfu Yang
- School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Design of acetylene-modified bio-based tri-functional benzoxazine and its copolymerization with bismaleimide for performance enhancement. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Xie L, Yang R, Li N, Froimowicz P, Zhang K. Competitive Study of Novel Triptycene-Containing Benzoxazine Monomers and a Thermoresponsive Linear Main Chain-Type Benzoxazine Copolymer: Synthesis, Polymerization, and Thermal Properties of Their Thermosets. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Xie
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rui Yang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nan Li
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pablo Froimowicz
- Design and Chemistry of Macromolecules Group, Institute of Technology in Polymers and Nanotechnology (ITPN), UBA-CONICET, FADU, University of Buenos Aires, Intendente Güiraldes 2160, Pabellón III, Subsuelo, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Kolesnikov TI, Orlova AM, Drozdov FV, Buzin AI, Cherkaev GV, Kechekyan AS, Dmitryakov PV, Belousov SI, Kuznetsov AA. New imide-based thermosets with propargyl ether groups for high temperature composite application. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Yang W, Xie Y, Chen J, Huang C, Xu Y, Lin Y. Metal Ion-Catalyzed Low-Temperature Curing of Urushiol-Based Polybenzoxazine. Front Chem 2022; 10:879605. [PMID: 35572108 PMCID: PMC9096162 DOI: 10.3389/fchem.2022.879605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 12/03/2022] Open
Abstract
In this work, urushiol-based polybenzoxazine is cured by the Lewis acid (FeCl3, AlCl3, and CuCl2) at low temperature instead of high thermal curing temperature. The effect of the Lewis acid on structures and properties of the polymers is revealed. The relating urushiol-based benzoxazine monomer (BZ) was synthesized by natural urushiol, formaldehyde, and n-octylamine. The monomer was reacted with the Lewis acid with a molar ratio of 6:1 (Nmonomer: NMetal) at 80°C to obtain films that can be cured at room temperature. The chemical structures of benzoxazine monomers were identified by Fourier-transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H-NMR). The interaction between the metal ion and the polymers is revealed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance-FTIR (ATR-FTIR). The effect of the Lewis acid on the mechanical properties, wettability, and thermal stability was investigated. The results show that the benzoxazine cured by Cu2+ has a better performance than that cured by Al3+ and Fe3+.
Collapse
Affiliation(s)
- Wen Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Yaofeng Xie
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Jipeng Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
- *Correspondence: Yucai Lin, ; Yanlian Xu, ; Jipeng Chen,
| | - Chunmei Huang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Yanlian Xu
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou, China
- *Correspondence: Yucai Lin, ; Yanlian Xu, ; Jipeng Chen,
| | - Yucai Lin
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
- *Correspondence: Yucai Lin, ; Yanlian Xu, ; Jipeng Chen,
| |
Collapse
|
7
|
Mohamed MG, Li CJ, Khan MAR, Liaw CC, Zhang K, Kuo SW. Formaldehyde-Free Synthesis of Fully Bio-Based Multifunctional Bisbenzoxazine Resins from Natural Renewable Starting Materials. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Chemistry Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Chia-Jung Li
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Mo Aqib Raza Khan
- Department of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Metal Complexes of the Porphyrin-Functionalized Polybenzoxazine. Polymers (Basel) 2022; 14:polym14030449. [PMID: 35160439 PMCID: PMC8839356 DOI: 10.3390/polym14030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
New porphyrin-functionalized benzoxazine (Por-BZ) in high purity and yield was synthesized in this study based on 1H and 13C NMR and FTIR spectroscopic analyses through the reduction of Schiff base formed from tetrakis(4-aminophenyl)porphyrin (TAPP) and salicylaldehyde and the subsequent reaction with CH2O. Thermal properties of the product formed through ring-opening polymerization (ROP) of Por-BZ were measured using DSC, TGA and FTIR spectroscopy. Because of the rigid structure of the porphyrin moiety appended to the benzoxazine unit, the temperature required for ROP (314 °C) was higher than the typical Pa-type benzoxazine monomer (ca. 260 °C); furthermore, poly(Por-BZ) possessed a high thermal decomposition temperature (Td10 = 478 °C) and char yield (66 wt%) after thermal polymerization at 240 °C. An investigation of the thermal and luminescence properties of metal–porphyrin complexes revealed that the insertion of Ni and Zn ions decreased the thermal ROP temperatures of the Por-BZ/Ni and Por-BZ/Zn complexes significantly, to 241 and 231 °C, respectively. The metal ions acted as the effective promoter and catalyst for the thermal polymerization of the Por-BZ monomer, and also improved the thermal stabilities after thermal polymerization.
Collapse
|