1
|
Molnar K, Sasidharan Pillai A, Chen D, Kaszas G, McKenna GB, Kornfield JA, Puskas JE. Investigation of the Structure, Filler Interaction and Degradation of Disulfide Elastomers made by Reversible Radical Recombination Polymerization (R3P). Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
Chen D, Molnar K, Kim H, Helfer CA, Kaszas G, Puskas JE, Kornfield JA, McKenna GB. Linear Viscoelastic Properties of Putative Cyclic Polymers Synthesized by Reversible Radical Recombination Polymerization (R3P). Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Dongjie Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas79409, United States
| | - Kristof Molnar
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest1089, Hungary
| | - Hojin Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Carin A. Helfer
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Gabor Kaszas
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Judit E. Puskas
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Julia A. Kornfield
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Gregory B. McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| |
Collapse
|
3
|
Wang J, O'Connor TC, Grest GS, Ge T. Superstretchable Elastomer from Cross-linked Ring Polymers. PHYSICAL REVIEW LETTERS 2022; 128:237801. [PMID: 35749195 DOI: 10.1103/physrevlett.128.237801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The stretchability of polymeric materials is critical to many applications such as flexible electronics and soft robotics, yet the stretchability of conventional cross-linked linear polymers is limited by the entanglements between polymer chains. We show using molecular dynamics simulations that cross-linked ring polymers are significantly more stretchable than cross-linked linear polymers. Compared to linear polymers, the entanglements between ring polymers do not act as effective cross-links. As a result, the stretchability of cross-linked ring polymers is determined by the maximum extension of polymer strands between cross-links, rather than between trapped entanglements as in cross-linked linear polymers. The more compact conformation of ring polymers before deformation also contributes to the increase in stretchability.
Collapse
Affiliation(s)
- Jiuling Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Thomas C O'Connor
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ting Ge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
4
|
McKenna GB, Chen D, Mangalara SCH, Kong D, Banik S. Some open challenges in polymer physics*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gregory B. McKenna
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina USA
| | - Dongjie Chen
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| | | | - Dejie Kong
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| | - Sourya Banik
- Department of Chemical Engineering Texas Tech University Lubbock Texas USA
| |
Collapse
|