1
|
Bui AH, Fernando Pulle AD, Micallef AS, Lessard JJ, Tuten BT. Dynamic Chalcogen Squares for Material and Topological Control over Macromolecules. Angew Chem Int Ed Engl 2024; 63:e202404474. [PMID: 38453652 DOI: 10.1002/anie.202404474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Herein we introduce chalcogen squares via selenadiazole motifs as a new class of dynamic supramolecular bonding interactions for the modification and control of soft matter materials. We showcase selenadiazole motifs in supramolecular networks of varying primary chain length prepared through polymerization using tandem step-growth/Passerini multicomponent reactions (MCRs). Compared to controls lacking the selenadiazole motif, these networks display increased glass transition temperatures and moduli due to the chalcogen bonding linkages formed between chains. These elastomeric networks were shown to autonomously heal at room temperature, retaining up to 83 % of the ultimate tensile strength. Lastly, we use post-polymerization modification via the Biginelli MCR to add selenadiazole motifs to narrowly dispersed polymers for controlled topology in solution. Chalcogen squares via selenadiazoles introduce an exciting exchange mechanism to the realm of dynamic materials.
Collapse
Affiliation(s)
- Aaron H Bui
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Anne D Fernando Pulle
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Aaron S Micallef
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Central Analytical Research Facility, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Jacob J Lessard
- Beckman Institute for Advanced Science and Technology, Department of Chemistry, University of Illinois Urbana, Champaign Urbana, Illinois, 61801, United States of America
| | - Bryan T Tuten
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
2
|
Sun X, Wang C, Zhang X, Zhang Y, Wang Q, Sun J. Synthesis of Functional Isosorbide-Based Polyesters and Polyamides by Passerini Three-Component Polymerization. Chemistry 2023:e202303005. [PMID: 37823842 DOI: 10.1002/chem.202303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
Environmental issues are becoming more and more prominent, and bio-based polymers are essential to alleviate environmental degradation by replacing traditional polymers. With this context, a new family of functional isosorbide-based polyesters and polyamides with high glass transition temperature are prepared via Passerini-Three component polymerization (P-3CP). To optimize the P-3CP conditions, the influence of the polymerization solvent, temperature, feed ratio on the molar mass of final polymers are investigated. The higher molar mass (up to 10100 g/mol) and yield (>70 %) are achieved under very mild conditions (30 °C, standard atmosphere). Functional side groups, such as alkenyl, alkynyl and methyl ester, were introduced into polymer structure via P-3CP by using functional isocyanides. The obtained polyesters and polyamides are characterized by nuclear magnetic resonance (NMR) and infrared (IR) spectroscopies, differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). All polymers are thermal stable and amorphous with variable glass transition temperatures (Tg ). The obtained polyester has Tg up to 87.5 °C, while the Tg of polyamides (ISPA-2) is detected to be 97.5 °C depending on the amide bonds in the polymer backbone and the benzene ring side groups. The cytotoxicity is investigated by the CCK-8 assay against mBMSC cells to confirm the biological safety. Overall, this novel strategy provides an efficient approach to produce functional isosorbide-based polyesters and polyamides, which are promising prospect for being applied to biodegradable materials.
Collapse
Affiliation(s)
- Xiaofei Sun
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042, Qingdao, China
| | - Chengliang Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042, Qingdao, China
| | - Xu Zhang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042, Qingdao, China
| | - Yan Zhang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042, Qingdao, China
| | - Qingfu Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042, Qingdao, China
| | - Jingjiang Sun
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042, Qingdao, China
| |
Collapse
|
3
|
Structure optimization of new tumor-selective Passerini α-acyloxy carboxamides as Caspase-3/7 activators. Sci Rep 2022; 12:22390. [PMID: 36575196 PMCID: PMC9794698 DOI: 10.1038/s41598-022-26469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Selective elimination of tumors has always been the mainstay of oncology research. The on-going research underlying the cellular apoptotic mechanisms reveal caspases activation, especially the key effector caspase-3, as a personalized tumor-selective therapeutic strategy. Our continued research protocol has exploited new optimized Passerini α-acyloxy carboxamides as efficient apoptotic inducers via caspase-3/7 dependent mechanism with highly selective anticancer profiles. The adopted design rationale relied on excluding structural alerts of previous leads, while merging various pharmacophoric motifs of natural and synthetic caspase activators via optimized one-pot Passerini reaction conditions. The prepared compounds resulting from Passerini reaction were screened for their cytotoxic activities against colorectal Caco-2 and liver HepG-2 cancer cells compared to normal fibroblasts utilizing MTT assay. Notably, all compounds exhibited promising low-range submicromolar IC50 against the studied cancer cell lines, with outstanding tumor selectivity (SI values up to 266). Hence, they were superior to 5-fluorouracil. Notably, 7a, 7g, and 7j conferred the highest potencies against Caco-2 and HepG-2 cells and were selected for further mechanistic studies. Caspas-3/7 activation assay of the hit compounds and flow cytometric analysis of the treated apoptotic cancer cells demonstrated their significant caspase activation potential (up to 4.2 folds) and apoptotic induction capacities (up to 58.7%). Further assessment of Bcl2 expression was performed being a physiological caspase-3 substrate. Herein, the three studied Passerini adducts were able to downregulate Bcl2 in the treated Caco-2 cells. Importantly, the mechanistic studies results of the three hits echoed their preliminary MTT antiproliferative potencies data highlighting their caspase-3 dependent apoptotic induction. Finally, the in silico predicted physicochemical and pharmacokinetic profiles, as well as ligand efficiency metrics were drug-like.
Collapse
|
4
|
Wang C, Yu B, Li W, Zou W, Cong H, Shen Y. Effective strategy for polymer synthesis: multicomponent reactions and click polymerization. MATERIALS TODAY CHEMISTRY 2022; 25:100948. [DOI: 10.1016/j.mtchem.2022.100948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
5
|
Akar E, Kandemir D, Luleburgaz S, Kumbaraci V, Durmaz H. Efficient Post-Polymerization modification of pendant aldehyde functional polymer via reductive etherification reaction. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Travanut A, Monteiro PF, Smith S, Howdle SM, Grabowska A, Kellam B, Meier MAR, Alexander C. Passerini chemistries for synthesis of polymer pro-drug and polymersome drug delivery nanoparticles. J Mater Chem B 2022; 10:3895-3905. [DOI: 10.1039/d2tb00045h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
New materials chemistries are urgently needed to overcome the limitations of existing biomedical materials in terms of preparation, functionality and versatility, and also in regards to their compatibility with biological...
Collapse
|