1
|
Kelly MT, Zhao B. Worm-globule transition of amphiphilic pH-responsive heterografted bottlebrushes at air-water interface. SOFT MATTER 2024; 20:1224-1235. [PMID: 38230501 DOI: 10.1039/d3sm01635h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Heterografted molecular bottlebrushes (MBBs) with side chains composed of poly(n-butyl acrylate) (PnBA) and pH-responsive poly(2-(N,N-diethylamino)ethyl methacrylate) (PDEAEMA, pKa = 7.4) have been shown to be efficient, robust, and responsive emulsifiers. However, it remains unknown how they respond to external stimuli at interfaces. In this work, the shape-changing behavior of six hetero- and homografted MBBs at air-water interfaces in response to pH changes and lateral compression was investigated using a Langmuir-Blodgett trough and atomic force microscopy. At a surface pressure of 0.5 mN m-1, PDEAEMA-containing MBBs showed no worm-globule transitions when the pH was increased from 4.0 to 10.0, at which PDEAEMA becomes insoluble in water. Upon lateral compression at pH 4.0, MBBs with a mole fraction of PDEAEMA side chains (xPDEAEMA) < 0.50 underwent pronounced worm-globule shape transitions; there was an increasing tendency for bottlebrushes to become connected with increasing xPDEAEMA. At xPDEAEMA = 0.76, the molecules remained wormlike even at high compression. These observations were presumably caused by the increased electrostatic repulsion between protonated PDEAEMA side chains in the subphase with increasing xPDEAEMA, hindering the shape change. At pH 10.0, MBBs with xPDEAEMA < 0.50 showed a lower tendency to change their wormlike morphologies upon compression than at pH 4.0. No shape transition was observed when xPDEAEMA > 0.50, attributed to the relatively high affinity toward water and the rigidity of PDEAEMA. This study revealed the shape-changing behavior of amphiphilic pH-responsive MBBs at air-water interfaces, which could be useful for future design of multicomponent MBBs for potential applications.
Collapse
Affiliation(s)
- Michael T Kelly
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
2
|
Kelly MT, Chen Z, Russell TP, Zhao B. Amphiphilic Heterografted Molecular Bottlebrushes with Tertiary Amine-Containing Side Chains as Efficient and Robust pH-Responsive Emulsifiers. Angew Chem Int Ed Engl 2023; 62:e202315424. [PMID: 37956395 DOI: 10.1002/anie.202315424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
By combining the unique characteristics of molecular bottlebrushes (MBBs) and the properties of stimuli-responsive polymers, we show that MBBs with randomly grafted poly(n-butyl acrylate) and pH-responsive poly(2-(N,N-diethylamino)ethyl methacrylate) (PDEAEMA) side chains are efficient and robust pH-responsive emulsifiers. Water-in-toluene emulsions were formed at pH 4.0 and disrupted by increasing the pH to 10.0. The emulsion generation and disruption was reversible over the ten cycles investigated, and the bottlebrushes remained intact. The exceptional emulsion stability stemmed from the high interfacial binding energy of MBBs, imparted by their large molecular size and Janus architecture at the interface, as evidenced by the interfacial jamming and wrinkling of the assemblies upon reducing the interfacial area. At pH 10.0, PDEAEMA became water-insoluble, and the MBBs desorbed from the interface, causing de-emulsification. Consequently, we have shown that the judicious design of MBBs can generate properties of particle emulsifiers from their large size, while the responsiveness of the MBBs enables more potential applications.
Collapse
Affiliation(s)
- Michael T Kelly
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Zhan Chen
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
3
|
Zhu Y, Liu P, Zhang J, Hu J, Zhao Y. Facile synthesis of monocyclic, dumbbell-shaped and jellyfish-like copolymers using a telechelic multisite hexablock copolymer. Polym Chem 2022. [DOI: 10.1039/d2py00824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterofunctional hexablock copolymer comprising alternating reactive and non-reactive blocks is designed to generate cyclic, dumbbell-shaped and jellyfish-like copolymers.
Collapse
Affiliation(s)
- Yingsheng Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiaman Hu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Wang Z, Lan Y, Liu P, Li X, Zhao Y. Rational design of a multi-in-one heterofunctional agent for versatile topological transformation of multisite multisegmented polystyrenes. Polym Chem 2022. [DOI: 10.1039/d2py00662f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A “seven-in-one” initiating, coupling and stimuli-labile agent is designed to achieve topological transformations with reduced, similar and enhanced molar masses.
Collapse
Affiliation(s)
- Zhigang Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingjia Lan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaohong Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|