1
|
Huang YK, Li T, Feng H, Lv LT, Tang TX, Lin Z, Ye KH, Wang YQ. High-Valence Co Stabilized by In-Situ Growth of ZIF-67 on NiCo-LDH for Enhanced Performance in Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407443. [PMID: 39544157 DOI: 10.1002/smll.202407443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/07/2024] [Indexed: 11/17/2024]
Abstract
The application of metal-organic frameworks (MOFs) in the electro-catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy-hydroxides to obtain ZIF-67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co4+ by ZIF-67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η100) of 293 mV, a Tafel slope of 25.8 mV dec-1, and a charge transfer resistance of 3.9 Ω, with long-term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm-2. This work on binder-free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost-effective and controllable production of MOF-based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials.
Collapse
Affiliation(s)
- Yan-Kai Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tong Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Han Feng
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Luo-Tian Lv
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tong-Xin Tang
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhan Lin
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kai-Hang Ye
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Chemical Engineering Guangdong Laboratory, Jieyang Branch of Chemistry, Jieyang, 515200, China
| | - Yong-Qing Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
2
|
Lin Z, Li L, Xi C, Li X, Feng S, Wang C, Wang H, Li T, Ma Y. Fabrication of the hollow dodecahedral NiCoZn layered double hydroxide for high-performance flexible asymmetric supercapacitor. J Colloid Interface Sci 2024; 657:91-101. [PMID: 38035423 DOI: 10.1016/j.jcis.2023.11.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Layered double hydroxides (LDHs) with unique layered structure have excellent theoretical capacitance. Nevertheless, the constrained availability of electrically active sites and cationic species curtails their feasibility for practical implementation within supercapacitors. Most of the reported materials are bimetallic hydroxides, and fewer studies are on trimetallic hydroxides. In here, the hollow dodecahedron NiCoZn-LDH is synthesized using CoZn metal-organic frameworks (CoZn-MOFs) as template. Its morphology and composition are studied in detail. Concurrently, the effect of the amount of third component on the resulting structure of NiCoZn-LDH is also researched. Benefiting from its favorable structural and compositional attributes to efficient transfer of ions and electrons, NiCoZn-LDH-200 demonstrates outstanding specific capacitance of 1003.3F g-1 at 0.5 A/g. Furthermore, flexible asymmetric supercapacitor utilizing NiCoZn-LDH-200 as the positive electrode and activated carbon (AC) as the negative electrode reveals favorable electrochemical performances, including a notable specific capacitance of 184.7F g-1 at 0.5 A/g, a power density of 368.21 W kg-1 at a high energy density of 65.66 Wh kg-1, an energy density of 31.78 Wh kg-1 at a high power density of 3985.97 W kg-1, a capacitance retention of 92 % after 8000 cycles at 5 A/g, and a good capacitance retention of 90 % after 500 cycles of bending. The template method presented herein can effectively solve the problem of easy accumulation and improve the electrochemical properties of the materials, which exhibits a broad research prospect.
Collapse
Affiliation(s)
- Zhongtai Lin
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Ling Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | | | - Xue Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Shixuan Feng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Chuanjin Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Haowen Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
3
|
Chen Q, Pan H, Chen Z, Jiang X, Li Y, Tian W, Liu H, Zhu S. Cobalt coordinated carbon quantum dots boosting the performance of NiCo-LDH for energy storage. J Colloid Interface Sci 2024; 655:110-119. [PMID: 37925967 DOI: 10.1016/j.jcis.2023.10.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Transition metal layered double hydroxides have extremely high specific capacitances but suffer from poor rate performance and cycling stability due to their low conductivity and structural stability. In this study, cobalt-coordinated carbon quantum dots (CoCQDs) were designed and synthesized to enhance the energy storage performance of nickel-cobalt layered double hydroxides (NiCo-LDH). Nickel and cobalt ions were co-electrodeposited with the CoCQDs to form a NiCo-LDH based composite electrode (denoted as CoC@LDH). Since the CoCQDs participated in the formation of the NiCo-LDH, the carbon quantum dots could be strongly bonded to the NiCo-LDH nanosheets through coordination interactions. Thus, the conductivity as well as the structure stability of the NiCo-LDH was effectively improved, which greatly boosted the cycle stability and rate performance of the NiCo-LDH. Several CoCQDs with different Co contents (nCoCQDs, n = 0.5, 1.0, 2.0) were fabricated and their effects on the performance of the resultant electrodes nCoC@LDH were investigated. The 1.0CoC@LDH electrode exhibited an impressive specific capacitance of 1867 F g-1 at 1 A-g-1, along with a significantly enhanced capacitance retention of 84.6 % after 6000 cycles at 5 A g-1 (benchmark 49.5 %). This ingenious design provides a new avenue for fabricating pseudo-capacitive materials with unprecedented high performance.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Pan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Zhixin Chen
- School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, NSW 2522, Australia
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wensheng Tian
- State Key Laboratory of Space Power-Sources, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Hao Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Tang X, Zhao S, Wu J, He Z, Zhang Y, Huang K, Zou Z, Xiong X. Construction of rose flower-like NiCo-LDH electrode derived from bimetallic MOF for highly sensitive electrochemical sensing of hydrazine in food samples. Food Chem 2023; 427:136648. [PMID: 37399644 DOI: 10.1016/j.foodchem.2023.136648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
It is necessary to efficient detection hydrazine in food. Exploring highly sensitive, low-cost and fast response electrochemical hydrazine sensing methods has been a challenge in this field. In this paper, a conformal transformation method is used to prepare rose flower-like NiCo-LDH derivating from the bimetallic NiCo-MOFs, and the N2H4 sensing platform with a large electrocatalytic area, high conductivity and good stability was constructed. Based on the synergy between Ni and Co and the remarkable catalytic activity of the rough 3D flower-like structure, the N2H4 sensor has a linear response in the concentration range of 0.001-1 mmol/L and 1-7 mmol/L, with a sensitivity of 5342 μA L mmol-1 cm-2 and 2965 μA L mmol-1 cm-2 (S/N = 3), respectively, and low limit of detection of 0.043 μmol/L. This study opens a new door for the successful application of electrochemical sensors to detect N2H4 in real food samples.
Collapse
Affiliation(s)
- Xin Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, Sichuan, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Shan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Jiaying Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Zhiyuan He
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Yu Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Ke Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, Sichuan, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Zhirong Zou
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, Sichuan, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China.
| | - Xiaoli Xiong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, Sichuan, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China.
| |
Collapse
|
5
|
Yan W, Zeng HY, Zhang K, Long YW, Wang MX. Ni-Co-Mn hydrotalcite-derived hierarchically porous sulfide for hybrid supercapacitors. J Colloid Interface Sci 2023; 635:379-390. [PMID: 36599237 DOI: 10.1016/j.jcis.2022.12.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Ternary transition metal sulfides have attracted much attention due to their superior electrochemical properties. Nevertheless, it is difficult to commercialize sulfides due to their intrinsic properties such as dull reaction kinetics and an insufficient number of active sites. Herein, a self-supporting porous NiCoMnS sulfide (NiCoMnS/NF) arrayed on nickel foam (NF) with 3D honeycomb-like structure was designed and prepared via a hydrothermal and post-sulfidation process. It was found that the 3D hierarchically network architecture, constructed by nanosheets with abundant cavities, endowed NiCoMnS/NF with a high specific area and rich ion/electron-transport channels, which facilitated ion/electron transfer and Faradaic reaction kinetic. The optimal NiCoMnS/NF exhibited a markedly improved electrochemical performance due to the merits of complementary multi-composition and unique 3D network structure with multi-level "superhighways". Furthermore, the NiCoMnS//AC device fabricated with NiCoMnS/NF cathode and activated carbon (AC) anode delivered an excellent specific charge and exceptional energy density. This work offers a reference for designing the structure of electrode materials.
Collapse
Affiliation(s)
- Wei Yan
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Hong-Yan Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China.
| | - Kai Zhang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Yi-Wen Long
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Ming-Xin Wang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| |
Collapse
|
6
|
Huang M, Zhao K, Bai Z, He D, He J, Wang Y. Both MOFs-derived Fe-Co-Ni ternary hydroxide positive and Fe2O3/reduced graphene oxide negative electrode for asymmetric supercapacitors. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Zhang Y, Liang CM, Lu M, Yu H, Wang GS. Skillful Introduction of Urea during the Synthesis of MOF-Derived FeCoNi-CH/p-rGO with a Spindle-Shaped Substrate for Hybrid Supercapacitors. ACS OMEGA 2022; 7:33019-33030. [PMID: 36157736 PMCID: PMC9494635 DOI: 10.1021/acsomega.2c02712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
A composite (FeCoNi-CH/p-rGO) with a spindle-shaped substrate is controllably prepared by combining FeCoNi carbonate hydroxide (FeCoNi-CH) and partially reduced graphite oxide (p-rGO) using a novel chemical strategy. In the synthetic process, urea is introduced as the precipitant and reducing agent. MIL-88A as a self-template is converted into a ternary-metal CH composite, maintaining the original morphology by the metal ion etching and coprecipitation method, and graphite oxide is reduced to rGO with stronger conductivity partially at the same time. The electrochemical performance of the FeCoNi-CH/p-rGO is superior to FeCoNi-CH, with a high specific capacitance (1346 F g-1 at 0.5 A g-1) and rate capability (55.5% at 10 A g-1). The better electrochemical performance of the FeCoNi-CH/p-rGO composite is attributed to the pseudocapacitive energy storage capacity caused by the synergistic action of ternary-metal CH and the high conductivity of p-rGO. Meanwhile, the uniform mixture of FeOOH/activated carbon (AC) is fabricated as an anode to instead of the pure FeOOH or AC, which leads to the balancing energy density and high cycle stability of the hybrid supercapacitor (HSC). The corresponding assembled FeCoNi-CH/p-rGO//FeOOH/AC HSC exhibits a high energy density of 46.93 W h kg-1 at 400 W kg-1 power density and a cycle stability of 66.7% after 3000 cycles. In addition, this work also provides a facile method to fabricate metal-organic framework-derived ternary-metal CH/p-rGO composite materials, which could be applied in the fields of supercapacitors and other fields.
Collapse
Affiliation(s)
- Yu Zhang
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin 132000, China
| | - Chen-Ming Liang
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin 132000, China
| | - Min Lu
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin 132000, China
| | - Hao Yu
- School
of Chemical Engineering, Northeast Electric
Power University, Jilin 132000, China
| | | |
Collapse
|
8
|
Preparation of Flower-like Nickel-Based Bimetallic Organic Framework Electrodes for High-Efficiency Hybrid Supercapacitors. CRYSTALS 2021. [DOI: 10.3390/cryst11111425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metal organic frameworks (MOFs) have been rapidly developed in the application of electrode materials due to their controllable morphology and ultra-high porosity. In this research, flower-like layered nickel-based bimetallic MOFs microspheres with different metal central ions were synthesized by solvothermal method. Compared with Ni-MOFs, the optimization of the specific capacitance of NiCo-MOFs and NiMn-MOFs was been confirmed. For example, the specific capacitance of NiCo-MOFs can reach 882 F·g−1 at 0.5 A·g−1 while maintaining satisfactory cycle life (the specific capacity remains 90.1% of the initial value after 3000 charge-discharge cycles at 5 A·g−1). In addition, the NiCo-MOFs//AC HSCs, which are composed of NiCo-MOFs and activated carbon (AC), achieved a maximum energy density of 18.33 Wh·kg−1 at a power density of 400 W·kg−1, and showed satisfactory cycle life (82.4% after 3000 cycles). These outstanding electrochemical properties can be ascribed to the synergistic effect between metal ions, the optimized conductivity, and the unique layered stacked flower structure, which provides a smooth transmission channel for electrons/ions. In addition, this research gives a general method for the application of MOFs in the field of supercapacitors.
Collapse
|