1
|
Tong KM, Toigo J, Wolf MO. Deep-blue phosphorescence from platinum(ii) bis(acetylide) complexes with sulfur-bridged dipyridyl ligands. Chem Sci 2025; 16:5948-5956. [PMID: 40060099 PMCID: PMC11886617 DOI: 10.1039/d4sc08205b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/25/2025] [Indexed: 04/04/2025] Open
Abstract
New approaches to prepare rarer emitters such as those that are deep-blue are needed to advance OLED technologies. Here, we demonstrate that a series of new platinum(ii) bis(acetylide) complexes [Pt(N-N)(C[triple bond, length as m-dash]CPh)2] containing sulfur-bridged dipyridyl ligands (N-N) with various sulfur oxidation states: sulfide (S), sulfoxide (SO) and sulfone (SO2) give access to variable emission colors from green to deep-blue. Spectroscopic, electrochemical and computational studies show that mixed character excited states have energies which are significantly influenced by the oxidation state of sulfur and the presence of substituents. The sulfide and sulfoxide complexes are non-emissive in the solution state, while the sulfone complexes display 3MLCT/3LLCT excited-state yellow phosphorescence. In PMMA films the sulfide and sulfoxide complexes show intense deep-blue phosphorescence and green phosphorescence for the sulfone complexes, with photoluminescence quantum yields ranging from 0.35-0.91. Here we demonstrate the capability of changing the photophysical properties of these metal emitters by varying the oxidation state of sulfur to achieve intense deep-blue and green emitters.
Collapse
Affiliation(s)
- Ka-Ming Tong
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Jessica Toigo
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
2
|
Das B. Transition Metal Complex-Loaded Nanosystems: Advances in Stimuli-Responsive Cancer Therapies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410338. [PMID: 39663716 DOI: 10.1002/smll.202410338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Transition metal complex-loaded nanosystems (TMCNs) represent a cutting-edge platform for stimuli (light, ultrasound)-responsive cancer therapies. These nanosystems, incorporating metals such as manganese(II), zinc(II), ruthenium(II), rhenium(I), iridium(III), and platinum(IV), significantly enhance the efficacy of light-activated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), as well as ultrasound-activated treatments like sonodynamic therapy (SDT). TMCNs based on ruthenium(II), rhenium(I), and iridium(III) improve PDT, while manganese(II) and iridium(III) demonstrate exceptional sonosensitizing properties. In PTT, ruthenium(II) and iridium(III)-based TMCNs efficiently absorb light and generate heat. Emerging synergistic approaches that combine SDT, PTT, PDT, chemotherapy, and immunotherapy are demonstrated to be powerful strategies for precision cancer treatment. Zinc(II), ruthenium(II), iridium(III), and platinum(IV)-based TMCNs play a critical role in optimizing these therapies, enhancing tumor targeting, and reducing side effects. Furthermore, TMCNs can amplify immunotherapy by inducing immunogenic cell death, thus strengthening the immune response. These advances address key challenges such as tumor hypoxia and therapeutic resistance, opening new possibilities for innovative photosensitizer-based cancer treatments. This review highlights the latest progress in TMCNs design and applications, demonstrating their potential to revolutionize stimuli-responsive cancer therapies.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, 741246, India
| |
Collapse
|
3
|
Li J, Ren H, Li J, Wang L. Synthesis and Fluorescent Characteristics Study of Two Novel Co(II) Complexes. J Fluoresc 2024; 34:2737-2743. [PMID: 37906360 DOI: 10.1007/s10895-023-03488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
In this work, two novel mixed-ligand CPs that has a compositions of [Co2(µ-Hdppa)2(phen)2(H2O)2] (1) and {[Co(µ-Hdppa)(µ-4,4'-bipy)(H2O)]·H2O}n (2) is achieved through reaction of cobalt salts with the 5-(3,4-Dicarboxylphenyl)picolinic acid (H3dppa) with various N-donor co-ligands (1,10-phenanthroline (phen) for 1 and 4,4'-bipyridine (4,4'-bipy) for 2). The structures and characteristics of these two complexes were fully examined via IR, TGA, and SXRD. Furthermore, their superior blue fluorescence properties compared to the original ligands were confirmed through fluorescence spectroscopy. These two complexes prepared in this study have enriched the choices for blue fluorescent materials.
Collapse
Affiliation(s)
- Jing Li
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Hongjiang Ren
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Jiangtao Li
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Liuchang Wang
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Zhang C, Fang Y, He D, Xu K, Bian Y, Li Y, Peng M, Xiong W. Research Progress of Deep-Red to Near-Infrared Electroluminescent Materials Based on Organic Cyclometallated Platinum(II) Complexes. Top Curr Chem (Cham) 2024; 382:31. [PMID: 39382816 DOI: 10.1007/s41061-024-00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
In recent years, the near-infrared (NIR) light-emitting materials have attracted increasing attention due to the broad application prospects in the fields of military industry, aerospace, lighting, display and wearable devices. As the transition metal complexes, platinum(II) complexes have been shown to emit luminescence efficiently in NIR organic light-emitting diodes because of the unique d8 electron structure. This structure ensures that the platinum(II) complex molecules exhibit a high planarity, variety of excited states, and strong intermolecular interactions. This review summarizes the research progress of deep red to NIR organic light-emitting materials based on platinum(II) complexes in recent years and provides a certain reference for the further design and synthesis of NIR platinum(II) complex luminescent materials with superior performance.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Yuanyuan Fang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Danfeng He
- College of Science, Qiongtai Normal University, Haikou, 571100, Hainan, China
| | - Keyue Xu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Yuzhu Bian
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Yiru Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Mingsheng Peng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Wenjing Xiong
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China.
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
5
|
Abd-El-Aziz A, Ahmed SA, Zhang X, Ma N, Abd-El-Aziz AS. Macromolecules incorporating transition metals in the treatment and detection of cancer and infectious diseases: Progress over the last decade. Coord Chem Rev 2024; 510:215732. [DOI: 10.1016/j.ccr.2024.215732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Baykov SV, Katlenok EA, Baykova SO, Semenov AV, Bokach NA, Boyarskiy VP. Conformation-Associated C··· dz2-Pt II Tetrel Bonding: The Case of Cyclometallated Platinum(II) Complex with 4-Cyanopyridyl Urea Ligand. Int J Mol Sci 2024; 25:4052. [PMID: 38612862 PMCID: PMC11012616 DOI: 10.3390/ijms25074052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The nucleophilic addition of 3-(4-cyanopyridin-2-yl)-1,1-dimethylurea (1) to cis-[Pt(CNXyl)2Cl2] (2) gave a new cyclometallated compound 3. It was characterized by NMR spectroscopy (1H, 13C, 195Pt) and high-resolution mass spectrometry, as well as crystallized to obtain two crystalline forms (3 and 3·2MeCN), whose structures were determined by X-ray diffraction. In the crystalline structure of 3, two conformers (3A and 3B) were identified, while the structure 3·2MeCN had only one conformer 3A. The conformers differed by orientation of the N,N-dimethylcarbamoyl moiety relative to the metallacycle plane. In both crystals 3 and 3·2MeCN, the molecules of the Pt(II) complex are associated into supramolecular dimers, either {3A}2 or {3B}2, via stacking interactions between the planes of two metal centers, which are additionally supported by hydrogen bonding. The theoretical consideration, utilizing a number of computational approaches, demonstrates that the C···dz2(Pt) interaction makes a significant contribution in the total stacking forces in the geometrically optimized dimer [3A]2 and reveals the dz2(Pt)→π*(PyCN) charge transfer (CT). The presence of such CT process allowed for marking the C···Pt contact as a new example of a rare studied phenomenon, namely, tetrel bonding, in which the metal site acts as a Lewis base (an acceptor of noncovalent interaction).
Collapse
Affiliation(s)
- Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia; (E.A.K.); (A.V.S.); (V.P.B.)
| | | | | | | | - Nadezhda A. Bokach
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia; (E.A.K.); (A.V.S.); (V.P.B.)
| | | |
Collapse
|
7
|
Nguyen YH, Wu Y, Dang VQ, Jiang C, Teets TS. Combined Nucleophilic and Electrophilic Functionalization to Optimize Blue Phosphorescence in Cyclometalated Platinum Complexes. J Am Chem Soc 2024; 146:9224-9229. [PMID: 38517326 DOI: 10.1021/jacs.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Ligand-based functionalization strategies have emerged as powerful approaches to tune and optimize blue phosphorescence, which can involve nucleophilic addition to coordinated ligands or electrophilic functionalization via the coordination of exogenous Lewis acids. Whereas both have been used separately to enhance the photophysical properties of organometallic compounds with high-energy triplet states, in this work, we show that these two strategies can be used together on the same platform. Isocyanide-supported cyclometalated platinum compounds undergo nucleophilic addition with diethylamine to form a strong σ-donor acyclic diaminocarbene-supporting ligand. In a subsequent step, a cyanide ancillary ligand is converted into a more strongly π-acidic isocyanoborate via the coordination of a borane Lewis acid. Importantly, both of these ligand-based functionalization steps improve the quantum yields and lifetimes of the blue-phosphorescent complexes. This synergy results in complexes with photoluminescence quantum yields up to 0.40 for deep blue and 0.75 for sky blue regions and PL lifetimes on the order of 10-5 s.
Collapse
Affiliation(s)
- Yennie H Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Yanyu Wu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Vinh Q Dang
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Chenggang Jiang
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
8
|
Kashina MV, Luzyanin KV, Dar'in DV, Bezzubov SI, Kinzhalov MA. Phosphorescent Cyclometalated Palladium(II) and Platinum(II) Complexes Derived from Diaminocarbene Precursors. Inorg Chem 2024; 63:5315-5319. [PMID: 38470336 DOI: 10.1021/acs.inorgchem.3c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Metal-mediated self-assembly of isocyanides and methyl 4-aminopyrimidine-5-carboxylate leads to luminescent PdII and PtII complexes featuring C,N-cyclometalated acyclic diaminocarbene (ADC) ligands. The solid-state luminescent properties of these diaminocarbene derivatives are attributed to their triplet-state metal/metal-to-ligand charge-transfer (3MMLCT) nature, which is driven by attractive intermolecular M···M interactions further reinforced by the intramolecular π-π interactions even in the structure of the Pd compound, which is the first Pd-ADC phosphor reported.
Collapse
Affiliation(s)
- Maria V Kashina
- St. Petersburg University, 7-9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
| | - Konstantin V Luzyanin
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Dmitry V Dar'in
- St. Petersburg University, 7-9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
| | - Stanislav I Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Prosp. 31, Moscow 119991, Russian Federation
| | - Mikhail A Kinzhalov
- St. Petersburg University, 7-9 Universitetskaya Nab., St. Petersburg 199034, Russian Federation
| |
Collapse
|
9
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
10
|
Liu YJ, Liu Y, Zang SQ. Solvation-Mediated Self-Assembly from Crystals to Helices of Protic Acyclic Carbene Au I -Enantiomers with Chirality Amplification. Angew Chem Int Ed Engl 2023; 62:e202311572. [PMID: 37732820 DOI: 10.1002/anie.202311572] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/22/2023]
Abstract
Constructing chiral supramolecular assembly and exploring the underlying mechanism are of great significance in promoting the development of circularly polarized luminescence (CPL)-active materials. Herein, we report a solvation-mediated self-assembly from single-crystals to helical nanofibers based on the first protic acyclic (methoxy)(amino)carbenes (pAMACs) AuI -enantiomers driven by a synergetic aurophilic interactions and H-bonds. Their aggregation-dependent thermally activated delayed fluorescence properties with high quantum yields (ΦFL ) up to 95 % were proved to be attributed to packing modes of Au⋅⋅⋅Au dimers with π-stacking or one-dimensional extended Au⋅⋅⋅Au chains. Via drop-casting method, supramolecular P- or M-helices were prepared. Detailed studies on the helices demonstrate that formations of extended helical Au⋅⋅⋅Au molecular chains amplify supramolecular chirality, leading to strong CPL with high dissymmetry factor (|glum |=0.030, ΦFL =67 %) and high CPL brightness (BCPL ) of 4.87×10-3 . Our findings bring new insights into the fabrication of helical structures to improve CPL performance by modifying aurophilic interactions.
Collapse
Affiliation(s)
- Ying-Jie Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yu Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
11
|
Mandal A, Kushwaha R, Mandal AA, Bajpai S, Yadav AK, Banerjee S. Transition Metal Complexes as Antimalarial Agents: A Review. ChemMedChem 2023; 18:e202300326. [PMID: 37436090 DOI: 10.1002/cmdc.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
In antimalarial drug development research, overcoming drug resistance has been a major challenge for researchers. Nowadays, several drugs like chloroquine, mefloquine, sulfadoxine, and artemisinin are used to treat malaria. But increment in drug resistance has pushed researchers to find novel drugs to tackle drug resistance problems. The idea of using transition metal complexes with pharmacophores as ligands/ligand pendants to show enhanced antimalarial activity with a novel mechanism of action has gained significant attention recently. The advantages of metal complexes include tunable chemical/physical properties, redox activity, avoiding resistance factors, etc. Several recent reports have successfully demonstrated that the metal complexation of known organic antimalarial drugs can overcome drug resistance by showing enhanced activities than the parent drugs. This review has discussed the fruitful research works done in the past few years falling into this criterion. Based on transition metal series (3d, 4d, or 5d), the antimalarial metal complexes have been divided into three broad categories (3d, 4d, or 5d metal-based), and their activities have been compared with the similar control complexes as well as the parent drugs. Furthermore, we have also commented on the potential issues and their possible solution for translating these metal-based antimalarial complexes into the clinic.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Sumit Bajpai
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| |
Collapse
|
12
|
Singh J, Sharma S, Prakasham AP, Rajaraman G, Ghosh P. Accessing Bioactive Hydrazones by the Hydrohydrazination of Terminal Alkynes Catalyzed by Gold(I) Acyclic Aminooxy Carbene Complexes and Their Gold(I) Arylthiolato and Gold(III) Tribromo Derivatives: A Combined Experimental and Computational Study. ACS OMEGA 2023; 8:21042-21073. [PMID: 37323414 PMCID: PMC10268297 DOI: 10.1021/acsomega.3c01925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Hydrohydrazination of terminal alkynes with hydrazides yielding hydrazones 5-14 were successfully catalyzed by a series of gold(I) acyclic aminooxy carbene complexes of the type [{(4-R2-2,6-t-Bu2-C6H2O)(N(R1)2)}methylidene]AuCl, where R2 = H, R1 = Me (1b); R2 = H, R1 = Cy (2b); R2 = t-Bu, R1 = Me (3b); R2 = t-Bu, R1 = Cy (4b). The mass spectrometric evidence corroborated the existence of the catalytically active solvent-coordinated [(AAOC)Au(CH3CN)]SbF6 (1-4)A species and the acetylene-bound [(AAOC)Au(HC≡CPhMe)]SbF6 (3B) species of the proposed catalysis cycle. The hydrohydrazination reaction was successfully employed in synthesizing several bioactive hydrazone compounds (15-18) with anticonvulsant properties using a representative precatalyst (2b). The DFT studies favored the 4-ethynyltoluene (HC≡CPhMe) coordination pathway over the p-toluenesulfonyl hydrazide (NH2NHSO2C6H4CH3) coordination pathway, and that proceeded by a crucial intermolecular hydrazide-assisted proton transfer step. The gold(I) complexes (1-4)b were synthesized from the {[(4-R2-2,6-t-Bu2-C6H2O)(N(R1)2)]CH}+OTf- (1-4)a by treatment with (Me2S)AuCl in the presence of NaH as a base. The reactivity studies of (1-4)b yielded the gold(III) [{(4-R2-2,6-t-Bu2-C6H2O)(N(R1)2)}methylidene]AuBr3 (1-4)c complexes upon reaction with molecular bromine and the gold(I) perfluorophenylthiolato derivatives, [{(4-R2-2,6-t-Bu2-C6H2O)(N(R1)2)}methylidene]AuSC6F5 (1-4)d, upon treatment with C6F5SH.
Collapse
|
13
|
Katkova SA, Kozina DO, Kisel KS, Sandzhieva MA, Tarvanen DA, Makarov SV, Porsev VV, Tunik SP, Kinzhalov MA. Cyclometalated platinum(II) complexes with acyclic diaminocarbene ligands for OLED application. Dalton Trans 2023; 52:4595-4605. [PMID: 36928166 DOI: 10.1039/d3dt00080j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A novel series of cyclometalated platinum(II) complexes bearing acyclic diaminocarbene (ADC) ancillary ligands were designed and prepared. Their photophysical properties were systematically studied through experimental and theoretical investigations. All complexes exhibit green phosphorescence with a quantum efficiency of up to 45% in 2 wt% doped PMMA film at room temperature. The complexes are used as light-emitting dopants for organic light-emitting diode (OLED) fabrication. The devices displayed a green emission with a maximum current efficiency of 2.9 cd A-1 and a luminance of 2700 cd m-2. These results show that these cyclometalated platinum(II) complexes can be used as efficient green emitting components of OLED devices.
Collapse
Affiliation(s)
- Svetlana A Katkova
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russian Federation.
| | - Daria O Kozina
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russian Federation.
| | - Kristina S Kisel
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russian Federation.
| | - Maria A Sandzhieva
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation
| | - Dmitriy A Tarvanen
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation.,Harbin Engineering University, Harbin 150001, Heilongjiang, China.,Qingdao Innovation and Development Center of Harbin Engineering University, Qingdao 266000, Shandong, China
| | - Vitaly V Porsev
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russian Federation.
| | - Sergey P Tunik
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russian Federation.
| | - Mikhail A Kinzhalov
- St Petersburg University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russian Federation. .,Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| |
Collapse
|
14
|
Jiang C, Cañada LM, Nguyen NB, Halamicek MDS, Nguyen SH, Teets TS. Substituent-Dependent Azide Addition to Isocyanides Generates Strongly Luminescent Iridium Complexes. J Am Chem Soc 2023; 145:1227-1235. [PMID: 36603163 DOI: 10.1021/jacs.2c11062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ligand-centered functionalization reactions offer diverse strategies to prepare luminescent organometallic compounds. These compounds can have unique structures that are not accessible via traditional coordination chemistry and can possess enhanced or unusual photophysical properties. Here we show that bis-cyclometalated iridium bis-isocyanide complexes (1) react with azide (N3-) to form novel luminescent structures. The fate of the reaction with azide is determined primarily by the substituent on the aryl isocyanide. Those with electron-withdrawing substituents (CF3 or NO2) react with 1 equiv of azide followed by N2 extrusion, forming aryl cyanamido products (2). With electron-donating groups on the aryl isocyanide the reactivity is more diverse, and three outcomes are possible. In two cases, the isocyanide and azide undergo a [3 + 2] cycloaddition to form a C-bound tetrazolato structure (3). In three other cases, 2 equiv of azide are involved in the formation of a previously unobserved structure, where a tetrazolato and aryl cyanamido couple and rearrange to form a chelating ligand comprised of an N-bound tetrazolato and an acyclic diaminocarbene (4). Finally, a bimetallic aryl cyanamido complex (5) is isolated in one case. All compounds are luminescent, some with exceptional photoluminescence quantum yields as high as 0.81 in solution for sky-blue emission, and 0.87 for yellow emission and 0.65 for orange-red emission in polymer films.
Collapse
Affiliation(s)
- Chenggang Jiang
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Louise M Cañada
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Ngoc Bao Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Michael D S Halamicek
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Sami H Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
15
|
Palladium(II) and Platinum(II) Deprotonated Diaminocarbene Complexes Based on N-(2-Pyridyl)ureas with Oxadiazole Periphery. INORGANICS 2022. [DOI: 10.3390/inorganics10120247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metal mediated coupling of isocyanides with substituted N-(pyridine-2-yl) ureas was first used to incorporate privileged biological motifs into platinum metal complexes. We synthesized two palladium(II) and two platinum(II) cyclometallated species with oxadiazole cores. The compounds were isolated in good yields (61–73%) and characterized by high-resolution mass spectrometry and 1H, 13C, and 195Pt NMR spectroscopies. The structures of three complexes were additionally elucidated by X-ray diffraction analysis. These complexes indeed showed cytotoxic activity. The species bearing the 1,3,4-oxadiazole moiety exhibit more potency than the ones with the 1,2,4-oxadiazole ring. Particularly, the cytotoxic effect of both 1,3,4-oxadiazole-based complexes towards T98G cells significantly exceeds the common antitumor metal-drug cisplatin.
Collapse
|
16
|
Geyl KK, Baykov SV, Kasatkina SO, Savko PY, Boyarskiy VP. Reaction of coordinated isocyanides with substituted N-(2-pyridyl) ureas as a route to new cyclometallated Pd(II) complexes. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Coupling of Thiazole-2-Amines with Isocyanide Ligands in bis-(Isocyanide) Platinum Complex: A New Type of Reactivity. INORGANICS 2022. [DOI: 10.3390/inorganics10120221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The treatment of cis-[PtCl2(XylNC)2] with thiazol-2-amines in a 2:1 ratio leads to a regioisomeric mixture of two binuclear complexes. These regioisomers are products of kinetic and thermodynamic control capable of regioisomerization. When the same reaction is carried out with a 5-fold excess of thiazol-2-amine, the nucleophile is able to react with the in situ-formed binuclear platinum(II) complexes, yielding a new type of bis-carbene platinum species. All new isolated compounds were characterized by 1H, 13C{1H}, and 195Pt{1H} NMR spectroscopy, high-resolution ESI-MS, and single-crystal X-ray diffraction.
Collapse
|
18
|
Fluorescence vs. Phosphorescence: Which Scenario Is Preferable in Au(I) Complexes with Benzothiadiazoles? Molecules 2022; 27:molecules27238162. [PMID: 36500253 PMCID: PMC9741114 DOI: 10.3390/molecules27238162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The photoluminescence of Au(I) complexes is generally characterized by long radiative lifetimes owing to the large spin-orbital coupling constant of the Au(I) ion. Herein, we report three brightly emissive Au(I) coordination compounds, 1, 2a, and 2b, that reveal unexpectedly short emission lifetimes of 10-20 ns. Polymorphs 2a and 2b exclusively exhibit fluorescence, which is quite rare for Au(I) compounds, while compound 1 reveals fluorescence as the major radiative pathway, and a minor contribution of a microsecond-scale component. The fluorescent behaviour for 1-2 is rationalized by means of quantum chemical (TD)-DFT calculations, which reveal the following: (1) S0-S1 and S0-T1 transitions mainly exhibit an intraligand nature. (2) The calculated spin-orbital coupling (SOC) between the states is small, which is a consequence of overall small metal contribution to the frontier orbitals. (3) The T1 state features much lower energy than the S1 state (by ca. 7000 cm-1), which hinders the SOC between the states. Thus, the S1 state decays in the form of fluorescence, rather than couples with T1. In the specific case of complex 1, the potential energy surfaces for the S1 and T2 states intersect, while the vibrationally resolved S1-S0 and T2-S0 calculated radiative transitions show substantial overlap. Thus, the microsecond-scale component for complex 1 can stem from the coupling between the S1 and T2 states.
Collapse
|
19
|
Gavrilov GA, Kinzhalov MA. Isocyanide-Phosphine Complexes of Palladium(II) Dihalides: Synthesis, Structure, and Resistance to Ligand Disproportionation Reactions. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Sokolova E, Kinzhalov MA, Smirnov AS, Cheranyova AM, Ivanov DM, Kukushkin VY, Bokach NA. Polymorph-Dependent Phosphorescence of Cyclometalated Platinum(II) Complexes and Its Relation to Non-covalent Interactions. ACS OMEGA 2022; 7:34454-34462. [PMID: 36188282 PMCID: PMC9520548 DOI: 10.1021/acsomega.2c04110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Cyclometalated platinum(II) complexes [Pt(ppy)Cl(CNAr)] (ppy = 2-phenylpyridinato-C2,N; Ar = C6H4-2-I 1, C6H4-4-I 2, C6H3-2-F-4-I 3, and C6H3-2,4-I2 4) bearing ancillary isocyanide ligands were obtained by the bridge-splitting reaction between the dimer [Pt(ppy)(μ-Cl)]2 and 2 equiv any one of the corresponding CNAr. Complex 2 was crystallized in two polymorphic forms, namely, 2 I and 2 II, exhibiting green (emission quantum yield of 0.5%) and orange (emission quantum yield of 12%) phosphorescence, respectively. Structure-directing non-covalent contacts in these polymorphs were verified by a combination of experimental (X-ray diffraction) and theoretical methods (NCIplot analysis, combined electron localization function (ELF), and Bader quantum theory of atoms in molecules (QTAIM analysis)). A noticeable difference in the spectrum of non-covalent interactions of 2 I and 2 II is seen in the Pt···Pt interactions in 2 II and absence of these metallophilic contacts in 2 I. The other solid luminophores, namely, 1, 3 I-II, 4, and 4·CHCl3, exhibit green luminescence; their structures include intermolecular C-I···Cl-Pt halogen bonds as the structure-directing interactions. Crystals of 1, 2 I, 3 I, 3 II, 4, and 4·CHCl3 demonstrated a reversible mechanochromic color change achieved by mechanical grinding (green to orange) and solvent adsorption (orange to green).
Collapse
Affiliation(s)
- Elina
V. Sokolova
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Mikhail A. Kinzhalov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| | - Andrey S. Smirnov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Anna M. Cheranyova
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Daniil M. Ivanov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| | - Vadim Yu. Kukushkin
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Institute
of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russian Federation
| | - Nadezhda A. Bokach
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| |
Collapse
|
21
|
Nguyen YH, Soares JV, Nguyen SH, Wu Y, Wu JI, Teets TS. Platinum(II)-Substituted Phenylacetylide Complexes Supported by Acyclic Diaminocarbene Ligands. Inorg Chem 2022; 61:8498-8508. [PMID: 35609301 DOI: 10.1021/acs.inorgchem.2c00510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We introduce phosphorescent platinum aryl acetylide complexes supported by tert-butyl-isocyanide and strongly σ-donating acyclic diaminocarbene (ADC) ligands. The precursor complexes cis-[Pt(CNtBu)2(C≡CAr)2] (4a-4f) are treated with diethylamine, which undergoes nucleophilic addition with one of the isocyanides to form the cis-[Pt(CNtBu)(ADC)(C≡CAr)2] complexes (5a-5f). The new compounds incorporate either electron-donating groups (4-OMe and 4-NMe2) or electron-withdrawing groups [3,5-(OMe)2, 3,5-(CF3)2, 4-CN, and 4-NO2] on the aryl acetylide. Experimental HOMO-LUMO gaps, estimated from cyclic voltammetry, span the range of 2.68-3.61 eV and are in most cases smaller than the unsubstituted parent complex, as corroborated by DFT. In the ADC complexes, peak photoluminescence wavelengths span the range of 428 nm (2a, unsubstituted phenylacetylide) to 525 nm (5f, 4-NO2-substituted), with the substituents inducing a red shift in all cases. The phosphorescence E0,0 values and electrochemical HOMO-LUMO gaps are loosely correlated, showing that both can be reduced by either electron-donating or electron-withdrawing substituents on the aryl acetylides. The photoluminescence quantum yields in the ADC complexes are between 0.044 and 0.31 and the lifetimes are between 4.8 and 14 μs, a factor of 1.8-10× higher (for ΦPL) and 1.2-3.6× longer (for τ) than the respective isocyanide precursor (ΦPL = 0.014-0.12, τ = 2.8-8.2 μs).
Collapse
Affiliation(s)
- Yennie H Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| | - João Vitor Soares
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| | - Sami H Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| | - Yanyu Wu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| | - Judy I Wu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
22
|
Intermolecular (Isocyano group)···PtII interactions involving coordinated isocyanides in cyclometalated PtII complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Kinzhalov MA, Luzyanin KV. Synthesis and Contemporary Applications of Platinum Group Metals Complexes with Acyclic Diaminocarbene Ligands (Review). RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622010065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Kashina MV, Luzyanin KV, Katlenok E, Novikov AS, Kinzhalov MA. Experimental and Computational Tuning of Metalla-N-Heterocyclic Carbenes at Palladium(II) and Platinum(II) Centers. Dalton Trans 2022; 51:6718-6734. [DOI: 10.1039/d2dt00252c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium(II) and platinum(II) complexes featuring metalla-N-heterocyclic carbenes (7–12) were synthesised via metal-mediated coupling between equimolar cis-[MCl2(CNR)2] (R = 2,6-Me2C6H3 (Xyl), 2,4,6-Me3C6H3 (Mes)] and 2-aminopyridine or 2-aminopyrazine. Thiocyanate complexes 13–18 with...
Collapse
|