1
|
Jha RK, Chhavi, Jaiswal S, Parganiha D, Choudhary V, Saxena D, Maitra R, Singh S, Chopra S, Kumar S. Design, Synthesis, and Antibacterial Activities of Multi-Functional C 2-Functionalized 1,4-Naphthoquinonyl Organoseleniums. Chem Asian J 2025; 20:e202401054. [PMID: 39718003 DOI: 10.1002/asia.202401054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 12/25/2024]
Abstract
A practical and efficient reaction for C2-selenylation of 1,4-naphthoquinones has been explored. This coupling reaction of two redox structural motifs, such as 2-bromo-1,4-naphthoquinone with diaryldiselenide/ebselen has been achieved by using sodium borohydride reducing agent at room temperature. Using this approach, several 2-selenylated-1,4-naphthoquinones were obtained in moderate to good yields and thoroughly characterized by multinuclear (1H, 13C, and 77Se) NMR, cyclic voltammetry, and mass spectrometry. Further, light-irradiated thiolation of the synthesized selenazinone was also performed to show the utility of the synthesized compound for post-functionalization. Several 2-selenylated-1,4-naphthoquinones were studied by SC-XRD in which intramolecular Se⋅⋅⋅N (from quinolinyl ligand) non-bonded interactions were observed. Photophysical studies (UV-visible, emission, solvatochromism, and quantum yield) were also performed on selected C2-selenylated naphthoquinones. The naphthoquinonyl organoseleniums were also screened for their antibacterial properties and quinonyl organoselenium 5 d shows good antibacterial potential against S. aureus ATCC 29213 with MIC 0.5 μg/mL and a Selectivity Index of >200. Moreover, it also exhibited equipotent activity against various strains of S. aureus and Enterococcus faecium, including strains resistant to vancomycin and meropenem. From structure-activity correlation, it seems that nice blend of oxidant properties from quinone and antioxidant properties from selenium moiety makes it better candidate for antibacterial activity.
Collapse
Affiliation(s)
- Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Chhavi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Svastik Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Devendra Parganiha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Vishal Choudhary
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Deepanshi Saxena
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Rahul Maitra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Swechcha Singh
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sidharth Chopra
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
2
|
Hu XB, Chen Y, Zhu CL, Xu H, Zhou X, Rao W, Hang XC, Chu XQ, Shen ZL. Cross-Electrophile Couplings of Benzyl Sulfonium Salts with Thiosulfonates via C-S Bond Activation. J Org Chem 2024; 89:13601-13607. [PMID: 39228065 DOI: 10.1021/acs.joc.4c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A zinc-mediated cross-electrophile coupling of benzyl sulfonium salts with thiosulfonates via C-S bond cleavage was achieved. The reductive thiolation proceeded well under transition metal-free conditions to afford the desired benzyl sulfides in good yields, exhibiting both broad substrate scope and good functionality tolerance. In addition, the reaction could be applied to the use of selenosulfonate as an effective selenylation agent and be subjected to scale-up synthesis.
Collapse
Affiliation(s)
- Xuan-Bo Hu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Yuwei Chen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Chen-Long Zhu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Hao Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao-Chun Hang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Gong C, Huang J, Cai L, Yuan Y, Pu T, Huang M, Wu SH, Wang L. Visible-Light-Promoted Thiolation of Benzyl Chlorides with Thiosulfonates via a Photoactive Electron Donor-Acceptor Complex. J Org Chem 2024; 89:9450-9461. [PMID: 38867507 DOI: 10.1021/acs.joc.4c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Visible-light-promoted thiolation of benzyl chlorides with thiosulfonates is disclosed via an electron donor-acceptor complex strategy. In addition to efficiently delivering a series of arylbenzylsulfide compounds, versatile thioglycosides were also successfully constructed by applying the metal- and photocatalyst-free protocol. Preliminary mechanistic studies suggest that a radical-radical coupling process was involved in this transformation.
Collapse
Affiliation(s)
- Chao Gong
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Jialun Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Liuyan Cai
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Yilong Yuan
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Tonglv Pu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Mingjie Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| |
Collapse
|
4
|
Duan Y, Guo Z, Zheng T, Lu Y, Xu J, Liu J, Yang F. Iodine-Promoted Reductive Sulfenylation Using Ketones as Hydride Donors. J Org Chem 2024; 89:5851-5856. [PMID: 38587835 DOI: 10.1021/acs.joc.3c02904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Herein, an iodine-promoted reductive sulfenylation reaction of ketones with disulfides has been developed. This method provides an approach for synthesizing unsymmetrical alkyl-alkyl and alkyl-aryl sulfides in a single step. Investigation of the reaction mechanism revealed that ketones play a dual role in this process. They react with disulfides to produce vinyl thioethers and act as effective organic hydride donors, reducing the number of vinyl thioethers that are formed in situ. This study expands the range of applications of ketones in chemical synthesis.
Collapse
Affiliation(s)
- Yiping Duan
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhichao Guo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tiandong Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yang Lu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Fulai Yang
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Lighting Up the Organochalcogen Synthesis: A Concise Update of Recent Photocatalyzed Approaches. Catalysts 2023. [DOI: 10.3390/catal13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
This review describes the recent advances in photocatalyzed reactions to form new carbon–sulfur and carbon–selenium bonds. With a total of 136 references, of which 81 articles are presented, the authors introduce in five sections an updated picture of the state of the art in the light-promoted synthesis of organochalcogen compounds (from 2019 to present). The light-promoted synthesis of sulfides by direct sulfenylation of C–C π-bonds; synthesis of sulfones; the activation of Csp2–N bond in the formation of Csp2–S bonds; synthesis of thiol ester, thioether and thioacetal; and the synthesis of organoselenium compounds are discussed, with detailed reaction conditions and selected examples for each protocol.
Collapse
|
6
|
Ma C, Shang L, Zhao H, He X, Lv Q, Zhang D, Jiang Y. Visible light-promoted transition metal-free direct C3-carbamoylation of 2H-Indazoles. Front Chem 2022; 10:1087834. [DOI: 10.3389/fchem.2022.1087834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
We reported a general transition metal-free transformation to access C3-carbamoylated 2H-indazoles via visible light-induced oxidative decarboxylation coupling, in the presence of oxamic acids as the coupling sources, 4CzIPN as the photocatalyst, and Cs2CO3 as the base. The great application potential of this mild condition is highlighted by the late-stage modification of drugs, N-terminal modification of peptides, and the good antitumor activity of the novel desired product.
Collapse
|
7
|
Wang X, Meng J, Zhao D, Tang S, Sun K. Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Bi WZ, Zhang WJ, Li CY, Shao LH, Liu QP, Feng SX, Geng Y, Chen XL, Qu LB. Photoexcited sulfenylation of C(sp 3)-H bonds in amides using thiosulfonates. Org Biomol Chem 2022; 20:3902-3906. [PMID: 35502883 DOI: 10.1039/d2ob00557c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoexcited sulfenylation of C(sp3)-H bonds in amides is developed for the synthesis of sulfenyl amides using thiosulfonates as a sulfur source. In the presence of easily available and inexpensive Na2-eosin Y, TBHP and K2CO3, various sulfenyl amides can be obtained under the irradiation of blue light at room temperature.
Collapse
Affiliation(s)
- Wen-Zhu Bi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wen-Jie Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Chen-Yu Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lu-Hao Shao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qing-Pu Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Su-Xiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China. .,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450046, China
| | - Yang Geng
- Department of Pharmacy, Zhengzhou Railway Vocational and Technical College, Zhengzhou, 450046, China.
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
9
|
First Evidence of Tris(catecholato)silicate Formation from Hydrolysis of an Alkyl Bis(catecholato)silicate. Molecules 2022; 27:molecules27082521. [PMID: 35458719 PMCID: PMC9032887 DOI: 10.3390/molecules27082521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
The hydrolysis of 3-ammoniumpropylbis(catecholato)silicate 1, giving two different silica-based materials containing different amounts of tris(catecholato)silicate, is reported. The latter species can be formed through an attack of catechol to the silicon atom in the pentacoordinate complex, in which the silicon-carbon bond is further activated toward electrophilic proton cleavage. The Knoevenagel reaction was used as a probe in order to test the availability of functional groups on the surface of such materials.
Collapse
|
10
|
Yu T, Song D, Xu Y, Liu B, Chen N, Liu Y. Study on the Application of Thios/Selenium Sulfonates as Radical Reagent. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Liu BX, Wang F, Chen Y, Rao W, Shen SS, Wang SY. Visible-Light-Promoted Denitrogenative Ortho-selenylation Reaction of benzotriazinones: Synthesis of ortho-selenylated Benzamides, Ebselen Analogs. Org Chem Front 2022. [DOI: 10.1039/d2qo00121g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-promoted regioselective denitrogenative cross-coupling between benzotriazinones and selenosulfonates is reported. This protocol allows for the convenient synthesis of ortho-selenylated benzamides in good yields from readily available starting materials under...
Collapse
|
12
|
Yu S, Chen Z, Chen Q, Lin S, He J, Tao G, Wang Z. Research Progress in Synthesis and Application of Thiosulfonates. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Wang F, Chen Y, Rao W, Shen SS, Wang SY. Cu-catalyzed efficient construction of S (Se)-containing functional organosilicon compounds. Chem Commun (Camb) 2022; 58:12564-12567. [DOI: 10.1039/d2cc04512e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu-catalyzed cascade reaction of four-membered silacyclobutanes (SCBs) and thiosulfonates to construct S (Se)-containing organosilicon compounds is described.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Ying Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu road, Huqiu district, Suzhou, 215009, P. R. China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
14
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
15
|
He FS, Yao Y, Tang Z, Xie W, Wu J. Copper-catalyzed regio- and chemoselective selenosulfonylation of 1,6-enynes from sulfur dioxide. Org Chem Front 2021. [DOI: 10.1039/d1qo01258d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient copper-catalyzed multicomponent reaction of 1,6-enynes, diselenides, DABCO·(SO2)2, and cycloketone oxime esters was achieved, providing cyanoalkylsulfonated pyrrolidines in moderate to good yields.
Collapse
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yanfang Yao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhimei Tang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|