1
|
Guo G, Li W, Zheng J, Liu A, Zhang Q, Wang Y. PhI(OAc) 2-Promoted 1,2-Transfer Reaction between 1,1-Disubstituted Allylic Alcohols and Thiophenols. Molecules 2024; 29:3112. [PMID: 38999064 PMCID: PMC11243614 DOI: 10.3390/molecules29133112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The PhI(OAc)2-promoted 1,2-transfer reaction between allylic alcohols and thiophenols, conducted in an argon atmosphere, has proven to be effective in producing β-carbonyl sulfides from 1,1-disubstituted allylic alcohols in high yields. This method offers a fast and efficient way to synthesize β-carbonyl sulfides, which are valuable intermediates in organic synthesis. This discussion focuses on the effects of the oxidizer, temperature, and solvent on the reaction. A proposed tentative mechanism for this reaction is also discussed.
Collapse
Affiliation(s)
- Guozhe Guo
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Wenduo Li
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Jingjing Zheng
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Aping Liu
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Qi Zhang
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Yatao Wang
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| |
Collapse
|
2
|
Xiong B, Shi C, Ren Y, Xu W, Liu Y, Zhu L, Cao F, Tang KW, Yin SF. Zn-Catalyzed Dehydroxylative Phosphorylation of Allylic Alcohols with P(III)-Nucleophiles. J Org Chem 2024; 89:3033-3048. [PMID: 38372254 DOI: 10.1021/acs.joc.3c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel and efficient protocol for the synthesis of diarylallyl-functionalized phosphonates, phosphinates, and phosphine oxides through the zinc-catalyzed dehydroxylative phosphorylation of allylic alcohols with P(III)-nucleophiles via a Michaelis-Arbuzov-type rearrangement is reported. A broad range of allylic alcohols and P(III)-nucleophiles (P(OR)3, ArP(OR)2, and Ar2P(OR)) are well tolerated in this reaction, and the expected dehydroxylative phosphorylation products could be synthesized with good to excellent yields under the optimal reaction conditions. The reaction can be easily scaled up at a gram-synthesis level. Furthermore, through the step-by-step control experiments, kinetic study experiments, and 31P NMR tracking experiments, we acquired insights into the reaction and proposed the possible mechanism for this transformation.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Chonghao Shi
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yining Ren
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Fan Cao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
- College of Science, Central South University of Forestry and Technology, Changsha, Hunan 410004, P. R. China
| |
Collapse
|
3
|
Huang J, Li X, Xu L, Wei Y. Three-Component Oxychalcogenation of Alkenes under Metal-Free Conditions: A Tetrabutylammonium Tribromide-Catalyzed System. J Org Chem 2023. [PMID: 36797219 DOI: 10.1021/acs.joc.2c02856] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A three-component oxychalcogenation reaction, from alkenes, diselenides/thiophenols, and H2O/alcohols, has been realized herein. Tetrabutylammonium tribromide (TBATB) and dimethylsulfoxide (DMSO) are utilized as the catalyst and the terminal oxidant, respectively, to enable this difunctionalization transformation. The metal-free reaction system shows good functional group compatibility, providing a unified and practical approach to access β-hydroxyl or β-alkoxy organochalcogenides.
Collapse
Affiliation(s)
- Jiawei Huang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Xiaoman Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832003, China
| |
Collapse
|
4
|
Zhang J, Deng Y, Mo N, Chen L. Advances in Radical Mediated 1,2-Aryl Migration Reactions of α, α-Diarylallyl Alcohols. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
5
|
Gao Z, Chen Y. Sn(OTf)2-Catalyzed Allylic Substitution of Thiols to Allyl Alcohols: Access to Allyl Sulfides. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1738424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
A novel method for the mild and efficient synthesis of allyl sulfides has been developed with allyl alcohols and thiols as substrates. The desired allyl sulfide was obtained using a catalytic amount of Sn(OTf)2 in dichloromethane at room temperature after a reaction time of 12 hours. A diverse range of allyl sulfides have been obtained with good to excellent yields, including both linear and cyclic derivatives (27 products). Additionally, gram-scale reactions can be easily carried out with only 1 mol% catalyst, giving over 90% yields, which further proves the efficiency of our approach in synthesis. This methodology has both deep research significance and application value, providing a new pathway to access sulfide compounds. We strongly believe our method would be attractive to synthetic chemists and would be widely used in synthetic chemistry.
Collapse
|
6
|
Sun X, Li K, Zhao S, Zha Z, Wang Z. Construction of chiral 3-alkenyl-3-substituted oxindoles by stereoselective direct alkenylation of isatin derivatives and 3-vinylindoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
|
8
|
Indurthi HK, Das S, Kumar A, Sharma DK. K2S2O8-glucose mediated oxidative coupling of alcohols with indoles for synthesis of Bis(indolyl)methanes in water. NEW J CHEM 2022. [DOI: 10.1039/d2nj02525f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of inexpensive K2S2O8 in water at room temperature for synthesis of bis(indolyl)methanes (BIMs) from simple indoles and alcohols is reported. The key step involves the conversion of alcohols...
Collapse
|
9
|
Zhang K, Liang T, Wang Y, He C, Hu M, Duan XH, Liu L. Oxidative thiocyanation of allylic alcohols: an easy access to allylic thiocyanates with K2S2O8 and NH4SCN. Org Chem Front 2022. [DOI: 10.1039/d1qo01710a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A practical method for the synthesis of allylic thioacyanates from allylic alcohols was disclosed employing K2S2O8 as the oxidant and NH4SCN as the thiocyanate source.
Collapse
Affiliation(s)
- Keyuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tianbing Liang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yulong Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chonglong He
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|