1
|
Sun F, Miao M, Huang Y, Wu X, Li W, Lan XB, Yu JQ, Zhang J, An Z. Electrochemical Synthesis of 2-Amino-1,3-benzoxazines via TBAI-mediated Desulfurative Cyclization of Isothiocyanates and 2-Aminobenzyl Alcohols. J Org Chem 2025. [PMID: 39910786 DOI: 10.1021/acs.joc.4c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
An efficient one-step protocol has been developed to access a variety of 2-amino-1,3-benzoxazine derivatives via tetrabutylammonium iodide-mediated electrochemical desulfurative cyclization of isothiocyanates and 2-aminobenzyl alcohols. The reaction proceeds through a cycle involving in situ iodine generation, desulfurative cyclization, and iodide regeneration, efficiently forming intermolecular C-O and C-N bonds and affording 2-amino-1,3-benzoxazines in moderate to excellent yields. The practical utility of this strategy is evidenced by its broad substrate scope, good functional group compatibility, scalability to gram-scale synthesis, and metal- and oxidant-free conditions.
Collapse
Affiliation(s)
- Fengkai Sun
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Man Miao
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yu Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuli Wu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Wenxue Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Bing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jian-Qiang Yu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenyu An
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
2
|
Halimi G, Osmaniye D, Özkay Y, Kaplancıklı ZA. Development and assessment of novel pyrazole-thiadiazol hybrid derivatives as VEGFR-2 inhibitors: design, synthesis, anticancer activity evaluation, molecular docking, and molecular dynamics simulation. Z NATURFORSCH C 2024; 79:291-304. [PMID: 38818683 DOI: 10.1515/znc-2024-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 06/01/2024]
Abstract
Cancer remains a significant health challenge globally, requiring the development of targeted chemotherapeutics capable of specifically inhibiting cancer cell growth. Angiogenesis is one of the key features of tumor growth and metastasis and is, therefore, an important target for the treatment of many tumors. The vascular endothelial growth factor (VEGF) signaling pathway has proven to be a promising lead in anticancer therapy due to the central role it plays in tumor angiogenesis. Vascular endothelial growth factor receptor-2 (VEGFR-2) is a key mediator in the signaling pathway regulating angiogenesis. Targeting VEGFR-2 may disrupt angiogenesis, leading to a reduction in tumor blood supply and tumor progression. The design, synthesis, and assessment of novel VEGFR-2 inhibitor derivatives are the focus of this study, with particular emphasis on incorporating the pyrazole-thiadiazol pharmacophore into the molecular structure. Taking advantage of the pharmacophoric properties of pyrazole and 1,3,4-thiadiazol, compounds with different substituents in the main structure were designed and synthesized. The compounds were also evaluated for antiproliferative activity against cancer cell lines. Compound 4e demonstrated the highest activity among all compounds, with an IC50 of 9.673 ± 0.399 μM against HT-29 cells and 23.081 ± 0.400 μM against NIH3T3 cells. To further support the inhibitory activity of compound 4e, an in silico study was performed. Compound 4e demonstrated strong binding to the active site of VEGFR-2 in molecular docking studies, forming hydrogen bonds with key amino acid residues. The stability of the compound in the enzyme's active site was demonstrated through molecular dynamics simulations.
Collapse
Affiliation(s)
- Gresa Halimi
- Department of Pharmaceutical Chemistry, 52944 Faculty of Pharmacy, Anadolu University , 26470 Eskişehir, Türkiye
- 52944 Institute of Graduate Education, Anadolu University , 26470 Eskişehir, Türkiye
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, 52944 Faculty of Pharmacy, Anadolu University , 26470 Eskişehir, Türkiye
- 52944 Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University , 26470 Eskişehir, Türkiye
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, 52944 Faculty of Pharmacy, Anadolu University , 26470 Eskişehir, Türkiye
- 52944 Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University , 26470 Eskişehir, Türkiye
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, 52944 Faculty of Pharmacy, Anadolu University , 26470 Eskişehir, Türkiye
| |
Collapse
|
3
|
Yang ZX, Ding LC, Yang GH, Wang D, Shi L, Li Y, Liang D. Electrochemical Sulfonylation/Cyclization of N-Alkenylacrylamides with Sodium Sulfinates or Sulfonyl Hydrazides. J Org Chem 2024; 89:10660-10677. [PMID: 39024340 DOI: 10.1021/acs.joc.4c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Two general protocols for the regioselective electrochemically enabled sulfonylation cyclization of N-alkenylacrylamides with sodium sulfinates or sulfonyl hydrazides were described. These methods were carried out under mild, chemical oxidant-free, and transition-metal-free conditions with a broad substrate scope and good functional group tolerance to provide sulfonyl-containing 4-pyrrolin-2-ones, which is readily scalable to the gram scale.
Collapse
Affiliation(s)
- Zhi-Xian Yang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Lu-Cai Ding
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Gui-Hong Yang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Dongyin Wang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Lou Shi
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanni Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Deqiang Liang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
4
|
Jiang S, Zhuang D, Liu P, Xu Q, Luo X, Wang T, Zhang C, Yan R. Synthesis of isothiocyanato alkyl sulfides from alkenes using KSCN and DMTSM. Org Biomol Chem 2024; 22:4472-4477. [PMID: 38775306 DOI: 10.1039/d4ob00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A method for the synthesis of isothiocyanato alkyl sulfides from KSCN and DMTSM under metal-free conditions has been developed. The features of this reaction are low-cost, readily accessible starting materials and the use of KSCN as nucleophiles for C-NCS bond formation. Alkenes with various substituted groups react smoothly and the desired products are obtained in moderate to good yields.
Collapse
Affiliation(s)
- Shixuan Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Peihua Liu
- Research Institute of Oil and Gas Technology of Changqing Oilfield Company, Xian 710018, Shanxi, China
| | - Qiyang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Xiaofeng Luo
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Tianqiang Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Chengcheng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| |
Collapse
|
5
|
Das B, Dahiya A, Patel BK. Isothiocyanates: happy-go-lucky reagents in organic synthesis. Org Biomol Chem 2024; 22:3772-3798. [PMID: 38656266 DOI: 10.1039/d4ob00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Owing to their unique structural features, isothiocyanates (ITCs) are a class of highly useful and inimitable reagents as the -NCS group serves both as electrophile and nucleophile in organic synthesis. ITCs share a rich legacy in organic, medicinal, and combinatorial chemistry. Compared to their oxygen equivalents, isocyanates, ITCs are easily available, less unpleasant, and somewhat less harmful to work with (mild conditions) which makes them happy-go-lucky reagents. Functionalized ITCs can finely tune the reactivity of the -NCS group and thus can be exploited in the late-stage functionalization processes. This review's primary aim is to outline ITC chemistry in the construction and derivatization of heterocycles through the lens of sustainability. For ease and brevity, the sections are divided based on reactive centers present in functionalized ITCs and modes of cyclisation. Scrutinizing their probable unexplored directions for future research studies is also addressed.
Collapse
Affiliation(s)
- Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
- Department of Chemistry, Bagadhar Brahma Kishan College, Jalah, Assam 781327, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| |
Collapse
|
6
|
Hu X, Tao M, Gong K, Feng Q, Hu X, Li Y, Sun S, Liang D. Electrochemical or Photoelectrochemical Alkenylpolyfluoroalkylation of 3-Aza-1,5-dienes: Regioselective Entry to Polyfluoroalkylated 4-Pyrrolin-2-ones. J Org Chem 2023; 88:12935-12948. [PMID: 37673796 DOI: 10.1021/acs.joc.3c00790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
An electrochemical or photoelectrochemical regioselective polyfluoroalkylation/cyclization cascade of 3-aza-1,5-dienes with sodium fluoroalkanesulfinates is presented. This protocol proceeds with a broad substrate scope and good functional group tolerance under mild, oxidant-free, transition-metal-free, and electrolyte-free conditions to provide 3-polyfluoroalkylated 4-pyrrolin-2-ones in one step from readily available N-vinylacrylamides, and it is readily scalable to the Gram scale.
Collapse
Affiliation(s)
- Xi Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Minglin Tao
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Kaixing Gong
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Qin Feng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xiao Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanni Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shaoguang Sun
- Medical College, Panzhihua University, Panzhihua 617000, China
| | - Deqiang Liang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
7
|
Teng QH, Lu FL, Wang K, Zhou LY, Li DP. Chemodivergent Photocatalyzed Heterocyclization of Hydrazones and Isothiocyanates for the Selectivity Synthesis of 2-Amino-1,3,4-thiadiazoles and 1,2,4-Triazole-3-thiones. J Org Chem 2023. [PMID: 37141629 DOI: 10.1021/acs.joc.3c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A photocatalytic chemodivergent reaction for the selectivity formation of C-S and C-N bonds in a controlled manner was proposed. The reaction medium, either neutral or acidic, is critical to dictate the formation of 2-amino-1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones from isothiocyanates and hydrazones. This is a practical protocol to achieve the chemoselectivity under mild and metal-free conditions.
Collapse
Affiliation(s)
- Qing-Hu Teng
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Feng-Lai Lu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Li-Ya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Dian-Peng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
8
|
Shi Z, Li R, Lan W, Wei H, Sheng S, Chen J. Visible-light-induced intramolecular C–S bond formation for practical synthesis of 2,5-disubstituted 1,3,4-thiadiazoles. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2149342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Zhaocheng Shi
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Ruohan Li
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Wenqing Lan
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Haishan Wei
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Shouri Sheng
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Junmin Chen
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
9
|
Devi S, Jyoti, Kiran, Wadhwa D, Sindhu J. Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. Org Biomol Chem 2022; 20:5163-5229. [PMID: 35730661 DOI: 10.1039/d2ob00572g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterocyclic compounds are considered to be one of the most established structural classes due to their extensive application in agrochemicals, pharmaceuticals and organic materials. Over the past few years, the development of heterocyclic compounds has gone through a considerable renaissance from conventional traditional methodologies to non-conventional electro-organic synthesis. Replacing metal catalysts, strong oxidants and multi-step methodologies with metal and strong oxidant-free single-step protocols has revolutionized the field of sustainable organic synthesis. Electro-organic synthesis has evolved as a scalable and sustainable approach in different synthetic protocols in an environment-benign manner. The current review outlines the recent developments in C-C, C-N, C-S and C-O/Se bond formation for heterocycle synthesis using electrochemical methods. Different synthetic strategies and their detailed mechanistic description are presented to enlighten the future applications of electrochemistry in heterocycle synthesis.
Collapse
Affiliation(s)
- Suman Devi
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jyoti
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| | - Deepak Wadhwa
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| |
Collapse
|
10
|
Hu X, Tao M, Ma Z, Zhang Y, Li Y, Liang D. Regioselective Photocatalytic Dialkylation/Cyclization Sequence of 3‐Aza‐1,5‐dienes: Access to 3,4‐Dialkylated 4‐Pyrrolin‐2‐ones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao Hu
- School of Chemistry and Chemical Engineering Kunming University Kunming 650214 People's Republic of China
| | - Minglin Tao
- School of Chemistry and Chemical Engineering Kunming University Kunming 650214 People's Republic of China
| | - Zhongxiao Ma
- School of Chemistry and Chemical Engineering Kunming University Kunming 650214 People's Republic of China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering Kunming University Kunming 650214 People's Republic of China
| | - Yanni Li
- School of Chemistry and Chemical Engineering Kunming University Kunming 650214 People's Republic of China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering Kunming University Kunming 650214 People's Republic of China
| |
Collapse
|
11
|
Visible-light-induced direct C–N coupling of benzofurans and thiophenes with diarylsulfonimides promoted by DDQ and TBN. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Xu L, Ma Z, Hu X, Zhang X, Gao S, Liang D, Wang B, Li W, Li Y. Electroreductive synthesis of polyfunctionalized pyridin-2-ones from acetoacetanilides and carbon disulfide with oxygen evolution. Org Biomol Chem 2022; 20:1013-1018. [PMID: 35043137 DOI: 10.1039/d1ob02379a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A chemical reductant or a sacrificial electron donor is required in any reduction reactions, generally resulting in undesired chemical waste. Herein, we report a reductant-free reductive [3 + 2 + 1] annulation of β-keto amides with CS2 enabled by the synergy of electro/copper/base using water as an innocuous anodic sacrifice with O2 as a sustainable by-product. This electrochemical protocol is mild and provides access to polyfunctionalized pyridin-2-ones from simple starting materials in a single step.
Collapse
Affiliation(s)
- Lichun Xu
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Zhongxiao Ma
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Xi Hu
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Shulin Gao
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Baoling Wang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Weili Li
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Yanni Li
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| |
Collapse
|
13
|
Zeng T, Yang J, Yan K, Wang S, Zhu S, Zhao XE, Li D, Wen J. Electrooxidation-induced selective cleavage of C–N bonds of tertiary amines to access thioureas, selenoureas, and 2-aminated benzoselenazoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01394k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A metal-free, operationally simple, and scalable electrooxidation-induced selective cleavage of C–N bonds of tertiary amines to access thiourea, selenourea, and 2-aminated benzoselenazole derivatives has been developed.
Collapse
Affiliation(s)
- Ting Zeng
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China
| | - Jianjing Yang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China
| | - Kelu Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China
| | - Shibo Wang
- Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang SciTech University, P. R. China
| | - Shuyun Zhu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China
| | - Xian-En Zhao
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China
| | - Dandan Li
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, P. R. China
| | - Jiangwei Wen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China
| |
Collapse
|
14
|
He JQ, Yang ZX, Zhou XL, Li Y, Gao S, Shi L, Liang D. Exploring the regioselectivity of the cyanoalkylation of 3-aza-1,5-dienes: photoinduced synthesis of 3-cyanoalkyl-4-pyrrolin-2-ones. Org Chem Front 2022. [DOI: 10.1039/d2qo00918h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regioselective cyanoalkylalkenylation of 3-aza-1,5-dienes with oxime esters induced by visible light.
Collapse
Affiliation(s)
- Jia-Qin He
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhi-Xian Yang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xue-Lu Zhou
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanni Li
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shulin Gao
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Lou Shi
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
15
|
Shen J, Li S, Yao Z, Lin S, Cui X. Base-promoted Cyclization Reaction of o-Isothiocyanato Arylacetylenes and Aroylacetonitriles: Easy Access to Benzo[d][1,3]thiazines. Org Biomol Chem 2022; 20:7236-7240. [DOI: 10.1039/d2ob01424f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green and efficient synthesis of benzo[d][1,3]thiazines through base-promoted cyclization reaction of o-isothiocyanato arylacetylenes with aroylacetonitriles has been developed. This protocol displays high step economy and efficiency, and tolerates various...
Collapse
|
16
|
Tantawy AH, El-Behairy MF, Abd-Allah WH, Jiang H, Wang MQ, Marzouk AA. Design, Synthesis, Biological Evaluation, and Computational Studies of Novel Fluorinated Candidates as PI3K Inhibitors: Targeting Fluorophilic Binding Sites. J Med Chem 2021; 64:17468-17485. [PMID: 34791873 DOI: 10.1021/acs.jmedchem.1c01674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Highly fluorinated candidates containing anticancer pharmacophores like thiosemicarbazone (5a-e) and its cyclic analogues hydrazineylidenethiazolidine (6a-e), 2-aminothiadiazole (7a-e), and 2-hydrazineylidenethiazolidin-4-one (8a-e) were synthesized, and their cytotoxic activity was assayed against 60 tumor cell lines. Compounds 6c, 7b, and 8b displayed the most potent activity with lower toxic effects on MCF-10a. In vitro phosphatidylinositol 3-kinase (PI3K) enzyme inhibition was performed. Compound 6c displayed half-maximal inhibitory concentration (IC50, μM) values of 5.8, 2.3, and 7.9; compound 7b displayed IC50 values of 19.4, 30.7, and 73.7; and compound 8b displayed IC50 values of 77.5, 53.5, and 121.3 for PI3Kα, β, and δ, respectively. Moreover, cell cycle progression caused cell cycle arrest at the S phase for compounds 6c and 8b and at G1/S for compound 7b, while apoptosis was induced. In silico studies; molecular docking; physicochemical parameters; and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis were performed. The results showed that compound 6c is the most potent one with a selectivity index (SI) of 39 and is considered as a latent lead for further optimization of anticancer agents.
Collapse
Affiliation(s)
- Ahmed H Tantawy
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Department of Chemistry, College of Science, Benha University, Benha 13518, Egypt
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufiya 32897, Egypt
| | - Walaa Hamada Abd-Allah
- Pharmaceutical Chemistry Department, Collage of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, P.O. 77, 6th of October City, Giza 12568, Egypt
| | - Hong Jiang
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|