1
|
Chen B, Pan B, He X, Jiang L, Chan ASC, Qiu L. Access to chiral dihydrophenanthridines via a palladium(0)-catalyzed Suzuki coupling and C-H arylation cascade reaction using new chiral-bridged biphenyl bifunctional ligands. Chem Sci 2024; 15:6884-6890. [PMID: 38725491 PMCID: PMC11077526 DOI: 10.1039/d4sc00621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
A class of chiral-bridged biphenyl phosphine-carboxylate bifunctional ligands CB-Phos has been developed and successfully applied to Pd(0)-catalyzed single enantioselective C-H arylation and a one pot cascade reaction involving Suzuki cross-coupling and C-H arylation. The catalytic system provides a new and convenient way for the synthesis of versatile chiral dihydrophenanthridines with rich structures and broad functional group tolerance. Good to excellent yields with high enantioselectivities were generally achieved. The reaction mechanism of the cascade reaction was also preliminarily discussed.
Collapse
Affiliation(s)
- Bin Chen
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Bendu Pan
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Xiaobo He
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Long Jiang
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Albert S C Chan
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Liqin Qiu
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
2
|
Nigríni M, Bhosale VA, Císařová I, Veselý J. Enantioenriched 1,4-Benzoxazepines via Chiral Brønsted Acid-Catalyzed Enantioselective Desymmetrization of 3-Substituted Oxetanes. J Org Chem 2023; 88:17024-17036. [PMID: 37987742 PMCID: PMC10729023 DOI: 10.1021/acs.joc.3c01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Herein, we present a highly enantioselective desymmetrization of 3-substituted oxetanes enabled by a confined chiral phosphoric acid. This metal-free process allows effective access to chiral seven-membered 1,4-benzoxazepines with a high degree of enantiocontrol, under mild reaction conditions. The developed synthetic strategy tolerates a broad substrate scope and demonstrates its synthetic utility in various enantioselective product transformations, thus proving its effectiveness in diverse scenarios.
Collapse
Affiliation(s)
- Martin Nigríni
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Viraj A. Bhosale
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Ivana Císařová
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Jan Veselý
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| |
Collapse
|
3
|
Pan B, Qian X, Zhang Y, Jiang L, Cao R, Qiu L. Iridium-Catalyzed Intramolecular Asymmetric Allylic Etherification of Pyrimidinemethanols: Enantioselective Construction of Multifunctionalized Pyrimidine-Fused Oxazepines. Org Lett 2023. [PMID: 37450016 DOI: 10.1021/acs.orglett.3c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
An iridium-catalyzed intramolecular asymmetric allylic etherification of pyrimidinemethanols is described. In the presence of chiral-bridged biphenyl phosphoramidite ligand L3 and triethylborane, this process provided a class of novel pyrimidine-fused oxazepanes in up to 99% yield with 99.5% enantiomeric excess. The work addresses the challenge of insufficient nucleophilicity of aliphatic alcohols for allyl substitution and indicates the vital value of chiral-bridged biphenyl phosphoramidites. Various multifunctionalized transformations of the products further demonstrate the robust synthetic utility of this methodology.
Collapse
Affiliation(s)
- Bendu Pan
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Xu Qian
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaqi Zhang
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Long Jiang
- Instrumental Analysis and Research Centre, Sun Yat-sen University, Guangzhou 510275, China
| | - Rihui Cao
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Liqin Qiu
- School of Chemistry, IGCME, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Preparation of a Montmorillonite-Modified Chitosan Film-Loaded Palladium Heterogeneous Catalyst and its Application in the Preparation of Biphenyl Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248984. [PMID: 36558118 PMCID: PMC9782881 DOI: 10.3390/molecules27248984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The natural polymer chitosan was modified with polyvinyl alcohol to enhance the mechanical properties of the membrane, and then, the montmorillonite-modified chitosan-loaded palladium catalyst was prepared using the excellent coordination properties of montmorillonite. The results showed that the catalyst has good tensile strength, thermal stability, catalytic activity, and recycling performance and is a green catalytic material with industrial application potential.
Collapse
|
5
|
Li YY, Li S, Fan T, Zhang ZJ, Song J, Gong LZ. Enantioselective Formal [4 + 3] Annulations to Access Benzodiazepinones and Benzoxazepinones via NHC/Ir/Urea Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yang-Yang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shuai Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Fan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Jing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, 230026, China
| |
Collapse
|