1
|
Zhou Y, Lei SG, Abudureheman B, Wang LS, Yu ZC, Xiang JC, Wu AX. Transforming an azaarene into the spine of fusedbicyclics via cycloaddition-induced scaffold hopping of 5-Hydroxypyrazoles. Nat Commun 2024; 15:10907. [PMID: 39738133 DOI: 10.1038/s41467-024-55312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Skeleton editing for heteroarenes, especially pyrazoles, is challenging and remains scarce because these non-strained aromatics exhibit inert reactivities, making them relatively inactive for performing a dearomatization/cleavage sequence. Here, we disclose a cycloaddition-induced scaffold hopping of 5-hydroxypyrazoles to access the pyrazolopyridopyridazin-6-one skeleton through a single-operation protocol. By converting a five-membered aza-arene into a five-unit spine of a 6/6 fused-bicyclic, this work unlocks a ring-opening reactivity of the pyrazole core that involves a formal C = N bond cleavage while retaining the highly reactive N-N bond in the resulting product. A [4 + 2] cycloaddition of a temporarily dearomatized 5-hydroxypyrrole with an in situ generated aza-1,3-diene, followed by oxidative C-N bond cleavage, constitutes the domino pathway. A library of pyrazolopyridopyridazin-6-ones, which are medicinally relevant nitrogen-atom-rich tricyclics, is obtained efficiently from readily available materials.
Collapse
Affiliation(s)
- You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Shuang-Gui Lei
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Baihetiguli Abudureheman
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Li-Sheng Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Zhi-Cheng Yu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Jia-Chen Xiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R. China.
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, P. R. China.
| |
Collapse
|
2
|
Zhang WM, Zhao QS, Chen SY, Zhang CH, Yan SJ. Cascade Annulation for Synthesizing Chromenopyrrolones from o-Hydroxyphenyl Enaminones and 2-Halo- N-alkyloxyacetamides. J Org Chem 2024; 89:18322-18336. [PMID: 39600256 DOI: 10.1021/acs.joc.4c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A cascade cyclization reaction comprising two halogenation reactions and a Michael addition was developed for the synthesis of chromeno[2,3-c]pyrrole-3-ones 4. Additionally, another cascade cyclization reaction, which involves a halogenation reaction followed by two intramolecular Michael additions, was established for the synthesis of chromeno[2,3-b]pyrrole-2-ones 5. Both types of compounds were synthesized from o-hydroxyphenyl enaminones and 2-halo-N-alkyloxyacetamides through a process that facilitated the intramolecular formation of C-C, C-O, and C-N bonds to effectively establish two fused rings in a single operation. This novel protocol is efficient, uses readily accessible starting materials, and operates under mild conditions, demonstrating tolerance for various functional groups while achieving good yields.
Collapse
Affiliation(s)
- Wei-Min Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Qing-Sheng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Si-Yi Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Cong-Hai Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
3
|
Zhao KH, Qi JM, Hu XM, Li YD, Huang R, Yan SJ. Cycloaddition and Skeleton Rearrangement of Heterocyclic Ketene Aminals (HKAs) with 1-Diazonaphthalen-2(1 H)-ones for the Synthesis of Functionalized 1,2,3-Triazoles. Org Lett 2024; 26:6866-6871. [PMID: 39093330 DOI: 10.1021/acs.orglett.4c02356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
We developed a protocol for the synthesis of highly functionalized 5,6-dihydro-imidazo[1,2-c][1,2,3]triazole derivatives 4-5 (DHITs) from 1-diazonaphthalen-2(1H)-one derivatives with heterocyclic ketene aminals (HKAs). This strategy involved cycloaddition and skeletal rearrangement entailing the heating of a mixture of substrates 1 with HKAs 2-3 and THF without any catalyst. As a result, a series of DHITs 4-5 were produced by cleaving one bond (1 C═N bond) and forming three bonds (1 N-N and 2 C-N bonds) in a single step. This protocol achieved the dual functionalization of diazo building blocks involving both the aromatic nitrogen alkylation reaction to form an ArC-N bond without any metal catalyst and the intermolecular cycloaddition of the N═N bond. These strategies can be used to synthesize functionalized DHITs for combinatorial and parallel syntheses via one-pot reactions without any catalyst.
Collapse
Affiliation(s)
- Ke-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jin-Mei Qi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xing-Mei Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yuan-Da Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
4
|
He YW, Huang L, Huang K, Yan CG, Sun J, Han Y. Construction of Diverse Fused Chromene Frameworks via Isocyanide-Based Three-Component Reaction. J Org Chem 2024; 89:10854-10866. [PMID: 38993063 DOI: 10.1021/acs.joc.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A convenient synthetic protocol for diverse fused chromenes was successfully developed by a three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates, and various cyclic 1,3-dipolarophiles containing o-hydroxyphenyl group. In the absence of any catalyst, the three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates, and 3-(o-hydroxyarylidene)indolin-2-ones in tetrahydrofuran at 60 °C resulted in unique functionalized spiro[cyclobuta[c]chromene-1,3'-indolines] in good yields and with high diastereoselectivity. However, the similar three-component reaction with 2-(5-halo-2-hydroxyarylidene)indolin-2-ones afforded unexpected chain products in satisfactory yields. In addition, the three-component reaction of alkyl isocyanides, dialkyl but-2-ynedioates, and 2-(o-hydroxyarylidene)-1,3-indanediones in tetrahydrofuran at 60 °C resulted in complex indeno[2',1':5,6]pyrano[3,4-c]chromene derivatives in high yields and with high diastereoselectivity.
Collapse
Affiliation(s)
- Yu-Wei He
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Li Huang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Kun Huang
- Jiangsu Lianhuan Pharmaceutical Co., Ltd., Yangzhou 225000, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | | | - Ying Han
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
5
|
Neto BAD, Sorto JEP, Lapis AAM, Machado F. Functional chromophores synthesized via multicomponent Reactions: A review on their use as cell-imaging probes. Methods 2023; 220:142-157. [PMID: 37939912 DOI: 10.1016/j.ymeth.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
This review aims to provide a comprehensive overview of recent advancements and applications of fluorescence imaging probes synthesized via MCRs (multicomponent reactions). These probes, also known as functional chromophores, belong to a currently investigated class of fluorophores that are presently being successfully applied in bioimaging experiments, especially in various living cell lineages. We describe some of the MCRs that have been employed in the synthesis of these probes and explore their applications in biological imaging, with an emphasis on cellular imaging. The review also discusses the challenges and future perspectives in the field, particularly considering the potential impact of MCR-based fluorescence imaging probes on advancing this field of research in the coming years. Considering that this area of research is relatively new and nearly a decade has passed since the first publication, this review also provides a historical perspective on this class of fluorophores, highlighting the pioneering works published between 2011 and 2016.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil.
| | - Jenny E P Sorto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil; Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | | | - Fabricio Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| |
Collapse
|
6
|
Chen YH, Yang J, Lu ZH, Zhao KH, Xie QY, Yan SJ. Synthesis of benzo[ b][1,5]diazocin-6(5 H)-one derivatives via the Cu-catalysed oxidative cyclization of 2-aryl-1 H-indoles with 1,1-enediamines. Chem Commun (Camb) 2023; 59:1217-1220. [PMID: 36629537 DOI: 10.1039/d2cc06388c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel protocol for the synthesis of highly functionalized benzo[b][1,5]diazocin-6(5H)-one derivatives (BDCOs, 4 and 5) from 2-aryl-1H-indoles and 1,1-enediamines was developed via a complex cascade of reactions including regioselective free radical oxidation, the 1,2-addition of imine, imine-enamine tautomerization, intramolecular cyclization, and ring expansion. The cascade reaction was enabled by refluxing a mixture of two substrates in the presence of di-tert-butyl peroxide (DTBP) as an oxidant and anhydrous CuI as a catalyst in toluene under argon protection. Consequently, a series of BDCOs (4 and 5) were synthesized with high regioselectivity in good yield. This protocol can be used for the synthesis of functionalized BDCOs via a one-pot oxidative annulation reaction rather than a multi-step reaction, which is suitable for both combinatorial and parallel syntheses of BDCOs.
Collapse
Affiliation(s)
- Yi-Hua Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Jing Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Zi-Han Lu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Ke-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Qi-Ying Xie
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
7
|
Lv Y, Chen L, Li K, Yun XH, Yan SJ. Multicomponent Cascade Reaction of 3-Cyanochromones: Highly Site-Selective Synthesis of 2-(1 H-Imidazol-1-yl)-4 H-chromen-4-one Derivatives. J Org Chem 2022; 87:15187-15196. [DOI: 10.1021/acs.joc.2c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ying Lv
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Li Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Kun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xing-Han Yun
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
8
|
Cao X, Duan Y, Lv K, Lu Z, Chen Y, Yan S. Highly selective synthesis of functionalized morphan derivatives through a multi-component cascade reaction of 3-formylchromones, 2-naphthols, and enaminones. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
9
|
Design, synthesis, in silico and biological evaluations of novel polysubstituted pyrroles as selective acetylcholinesterase inhibitors against Alzheimer's disease. Sci Rep 2022; 12:15236. [PMID: 36075926 PMCID: PMC9454393 DOI: 10.1038/s41598-022-18224-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
The objective of this study was to design new polysubstituted pyrrole derivatives as selective acetylcholinesterase (AChE) inhibitors to target Alzheimer's disease. In this context, a highly efficient, one-pot, sequential, multi-component synthesis of a diverse range of polysubstituted pyrroles was developed through a sequential domino strategy by the condensation of amines with 1,1-bis(methylthio)-2-nitroethene (BMTNE), Knovenagle reaction of arylglyoxals with malono derivatives and subsequent Michael addition and intramolecular cyclization reaction in EtOH at reflux. Thirty-nine synthesized compounds were evaluated as AChE and butyrylcholinesterase (BChE) inhibitors. Among the synthesized compounds, compound 4ad (IC50 = 2.95 ± 1.31 µM) was the most potent and selective AChE inhibitor with no significant inhibition against butyrylcholinesterase BChE. A kinetic study of 4ad revealed that this compound inhibited AChE in an uncompetitive mode. Based on a molecular modeling study, compound 4ad due to its small size properly fitted into the active site of AChE compared to BChE and stabilized by H-bond and hydrophobic interactions with the critical residues of the AChE binding pocket. Consequently, it was proposed that the 4ad derivative can be an ideal lead candidate against AD with a simple and practical operation of synthetic procedures.
Collapse
|
10
|
Chen L, Li YD, Lv Y, Lu ZH, Yan SJ. Cu-Catalyzed decarboxylative annulation of N-substituted glycines with 3-formylchromones: synthesis of functionalized chromeno[2,3- b]pyrrol-4(1 H)-ones. Chem Commun (Camb) 2022; 58:10194-10197. [PMID: 36000356 DOI: 10.1039/d2cc03816a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel protocol was developed for preparing functionalized chromeno[2,3-b]pyrrol-4(1H)-ones 3 (CMPOs) from 3-formylchromones with N-substituted glycine derivatives. The method entailed decarboxylative annulation of the acyl group of 3-formylchromones by simply heating a mixture of substrates 1-2 and toluene oxidized by 2-di-tert-butyl peroxide (DTBP) and catalyzed by CuBr. As a result, a series of CMPOs 3 were produced via a cascade reaction. This protocol can be used to synthesize functionalized CMPOs via combinatorial and parallel syntheses in a one-pot reaction rather than a tedious multi-step reaction.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Yuan-Da Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Ying Lv
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Zi-Han Lu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
11
|
Mkrtchyan S, Jakubczyk M, Lanka S, Yar M, Mahmood T, Ayub K, Sillanpää M, Thomas. C, Iaroshenko V. Mechanochemical Ni‐catalysed arylation of ortho‐hydroxyarylenaminones: Synthesis of isoflavones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at Center of Molecular and Macromolecular Studies, Polish Academy of Sciences. POLAND
| | - Michał Jakubczyk
- Institute of Bioorganic Chemistry Polish Academy of Sciences POLAND
| | | | | | | | | | - Mika Sillanpää
- f. Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, Aarhus C (Denmark). DENMARK
| | | | - Viktor Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at Center of Molecular and Macromolecular Studies in Lodz POLAND
| |
Collapse
|
12
|
Duan YG, Chen YH, Lu ZH, Huang R, Yan SJ. An Environmentally Benign Multicomponent Cascade Reaction of 3-Formylchromones, 2-Naphthols, and Heterocyclic Ketal Aminals: Site-Selective Synthesis of Functionalized Morphan Derivatives. J Org Chem 2022; 87:8562-8575. [PMID: 35699234 DOI: 10.1021/acs.joc.2c00695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel protocol has been developed for the preparation of highly functionalized 2-azabicyclo[3.3.1]nonane (morphan) derivatives by the interesting three-component cascade reaction of 3-formylchromones, 2-naphthol, and heterocyclic ketal aminals (HKAs) in the ionic liquid [BMIM]PF6 promoted by the organic base Et3N. A complex cascade reaction is required, which includes a 1,2-addition, two Michael reactions, two tautomerizations, and an N-alkylation accompanied by a ring-opening reaction and involving the cleavage of one C-O bond and the formation of four bonds (one C-N bond, one C-O bond, and two C-C bonds). As a result, functionalized morphans (5 and 6) bearing naphthalene-structured skeletons were prepared by simple heating of a mixture of 3-formylchromones, 2-naphthols, and HKAs in the environmentally friendly ionic liquid [BMIM]PF6. This protocol can be used in the synthesis of various morphans and is suitable for combinatorial and parallel syntheses of natural-like morphan derivatives. This approach has several advantages such as the use of an environmentally friendly solvent, simple and practical operation (multicomponent one-pot reaction), and satisfactory yields (65-88%).
Collapse
Affiliation(s)
- Ying-Gang Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yi-Hua Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zi-Han Lu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
13
|
Yun X, Chen L, Lv Y, Lu Z, Huang K, Yan S. Multicomponent cascade reaction of 3-formylchromones: Highly regioselective synthesis of functionalized pyridin-2(1H)-ones. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|