1
|
Fu YLT, Shi JW, Chen P, Xiao WJ, Lu LQ. New pathway under light: conversion of furans to pyrroles. Sci Bull (Beijing) 2025; 70:1189-1190. [PMID: 39979206 DOI: 10.1016/j.scib.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Affiliation(s)
- Yue-Liu-Ting Fu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jun-Wei Shi
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Peng Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430082, China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; Wuhan Institute of Photochemistry and Technology, Wuhan 430082, China.
| |
Collapse
|
2
|
Amina B, Redouane B. Green Synthesis of Bioactive Pyrrole Derivatives via Heterogeneous Catalysts Since 2010. Curr Top Med Chem 2025; 25:461-492. [PMID: 39069813 DOI: 10.2174/0115680266307696240708115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 07/30/2024]
Abstract
Pyrrole derivatives are known as building blocks for the synthesis of biological compounds and pharmaceutical drugs. Several processes were employed to synthesize pyrroles, including Hantzsch, Paal-Knorr, and cycloaddition of dicarbonyl compounds reaction. Using catalysts like nanoparticles, metal salts, and heterogeneous ones was necessary to obtain the targeted pyrrole structure. Also, to afford more active pyrrole compounds, heterocyclic molecules such as imidazole or other rings were used in the synthesis as amines. This review presents heterogeneous catalysts since 2010 for the green synthesis of bioactive pyrroles in a one-pot multi-component reaction. Additionally, each synthetic method included a demonstration of the suggested mechanisms. Diakylacetylenedicarboxylate, dicarbonyl group, amines, furans, and acetylene group are consolidated to yield biological pyrroles through the heterogeneous catalysts. Finally, various pyrrole-performed activities were displayed, such as antibacterial, anti-inflammatory, analgesic, and other significant activities.
Collapse
Affiliation(s)
- Berrichi Amina
- Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
- University of Ain Temouchent, BP 284, 46000, Ain Temouchent, Algeria
| | - Bachir Redouane
- Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| |
Collapse
|
3
|
Kim D, You J, Lee DH, Hong H, Kim D, Park Y. Photocatalytic furan-to-pyrrole conversion. Science 2024; 386:99-105. [PMID: 39361748 DOI: 10.1126/science.adq6245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 10/05/2024]
Abstract
The identity of a heteroatom within an aromatic ring influences the chemical properties of that heterocyclic compound. Systematically evaluating the effect of a single atom, however, poses synthetic challenges, primarily as a result of thermodynamic mismatches in atomic exchange processes. We present a photocatalytic strategy that swaps an oxygen atom of furan with a nitrogen group, directly converting the furan into a pyrrole analog in a single intermolecular reaction. High compatibility was observed with various furan derivatives and nitrogen nucleophiles commonly used in drug discovery, and the late-stage functionalization furnished otherwise difficult-to-access pyrroles from naturally occurring furans of high molecular complexity. Mechanistic analysis suggested that polarity inversion through single electron transfer initiates the redox-neutral atom exchange processes at room temperature.
Collapse
Affiliation(s)
- Donghyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaehyun You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Da Hye Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hojin Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Magkoev TT, Demidov OP, Abaev VT, Uchuskin MG, Chalikidi PN. Unveiling Orthogonal Reactivity of Substituted 2-(2-Azidostyryl)furans: Thermolysis and Photolysis versus Catalysis. J Org Chem 2024; 89:5778-5782. [PMID: 38581400 DOI: 10.1021/acs.joc.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
A systematic investigation of the decomposition of substituted 2-(2-azidostyryl)furans has been reported. The products of catalytic decomposition align with predictable patterns, consistent with established literature data. In contrast, photolysis and thermolysis lead to the formation of unexpected products. In this case, generated nitrenes surprisingly exhibited an affinity for the furan core, deviating from the anticipated attack on the olefin moiety.
Collapse
Affiliation(s)
- Taimuraz T Magkoev
- North-Ossetian State University, Vatutina st. 46, Vladikavkaz 362025, Russian Federation
| | - Oleg P Demidov
- North Caucasus Federal University, Pushkin st. 1, Stavropol 355009, Russian Federation
| | - Vladimir T Abaev
- North-Ossetian State University, Vatutina st. 46, Vladikavkaz 362025, Russian Federation
- North Caucasus Federal University, Pushkin st. 1, Stavropol 355009, Russian Federation
| | - Maxim G Uchuskin
- Perm State University, Bukireva st. 15, Perm 614990, Russian Federation
| | - Petrakis N Chalikidi
- North-Ossetian State University, Vatutina st. 46, Vladikavkaz 362025, Russian Federation
| |
Collapse
|
5
|
Vasev YA, Nasibullina ER, Makarov AS, Uchuskin MG. Interrupted Furan-Yne Cyclization: Access to Unsaturated Dicarbonyl Compounds and Their Subsequent Transformation into Functionalized Pyridazines. Org Lett 2023; 25:7780-7785. [PMID: 37862046 DOI: 10.1021/acs.orglett.3c02794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The key carbenoid intermediate of transition-metal-catalyzed furan-yne cyclization in Hashmi phenol synthesis could be efficiently intercepted with water under the developed reaction conditions in order to provide access to functionalized unsaturated dicarbonyl compounds that might serve as convenient precursors for the straightforward synthesis of annulated pyridazines.
Collapse
Affiliation(s)
- Yury A Vasev
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russia
| | | | - Anton S Makarov
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russia
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russia
| |
Collapse
|
6
|
Steparuk EV, Meshcheryakova EA, Viktorova VV, Ulitko MV, Obydennov DL, Sosnovskikh VY. Oxidative Ring-Opening Transformation of 5-Acyl-4-pyrones as an Approach for the Tunable Synthesis of Hydroxylated Pyrones and Furans. J Org Chem 2023; 88:11590-11602. [PMID: 37504952 DOI: 10.1021/acs.joc.3c00907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A selective and tunable approach for oxidation of 4-pyrones has been developed via ring-opening transformations leading to various hydroxylated oxaheterocycles. The first step of the strategy includes the base-catalyzed epoxidation of 5-acyl-4-pyrones in the presence of hydrogen peroxide for the effective synthesis of pyrone epoxides in high yields. The epoxides bearing the CO2Et group are reactive molecules that can undergo both pyrone and oxirane ring-opening via deformylation to produce hydroxylated 2-pyrones or 4-pyrones. The acid-promoted transformation led to 3-hydroxy-4-pyrones (24-76% yields), whereas the K2CO3-catalyzed ring-opening process of 2-carbethoxy-4-pyrone epoxides proceeded as an attack of alcohol at the C-3 position bearing the CO2Et group to give functionalized 6-acyl-5-hydroxy-2-pyrones (27-87% yields). The base-catalyzed reaction of 2-aryl-4-pyrone epoxides was followed by ring contraction and the dearoylation process to produce 3-hydroxyfuran-2-carbaldehydes in 42-80% yields. The transformation of 3-aroylchromone epoxides led to flavonols and 3-hydroxybenzofuran-2-carbaldehyde in the acidic and basic conditions, respectively. The prepared hydroxylated heterocycles demonstrated high reactivity for further transformations and low cytotoxicity and are promising fluorophores or UV filters.
Collapse
Affiliation(s)
- Elena V Steparuk
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Ekaterina A Meshcheryakova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Viktoria V Viktorova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Maria V Ulitko
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Dmitrii L Obydennov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| | - Vyacheslav Y Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation
| |
Collapse
|
7
|
Molteni L, Loro C, Christodoulou MS, Papis M, Foschi F, Beccalli EM, Broggini G. Ruthenium‐Catalyzed Decarboxylative Rearrangement of 4‐Alkenyl‐isoxazol‐5‐ones to Pyrrole Derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Camilla Loro
- University of Insubria: Universita degli Studi dell'Insubria DISAT ITALY
| | | | - Marta Papis
- University of Insubria Department of Science and High Technology: Universita degli Studi dell'Insubria Dipartimento di Scienza e Alta Tecnologia DISAT ITALY
| | - Francesca Foschi
- University of Insubria Department of Science and High Technology: Universita degli Studi dell'Insubria Dipartimento di Scienza e Alta Tecnologia DISAT ITALY
| | | | - Gianluigi Broggini
- Universita degli Studi dell'Insubria Dip. di Scienza e Alta Tecnologia Via Valleggio 11 22100 Como ITALY
| |
Collapse
|