1
|
Ali T, Rahman T, Perveen S, Wang L, Khan A. Asymmetric Amination of 1,2-Diol through Borrowing Hydrogen: Synthesis of Vicinal Amino α-Tertiary Alcohol. Chemistry 2025; 31:e202404152. [PMID: 40011211 DOI: 10.1002/chem.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
Methods to prepare vicinal amino alcohols are important because of their presence in biologically active compounds. Despite the development of various methods for vicinal amino alcohol synthesis, C(sp3)-rich oxygen-containing β-amine compounds continue to pose great challenge. While ring-opening reaction of epoxides with amine nucleophile is the prime method for vicinal amino alcohol preparation, epoxides are highly reactive and sometimes difficult to make, resulting in drawbacks regarding selectivity of this approach. Here, we report a catalytic enantio-convergent amination of α-tertiary 1,2-diols for the efficient access to vicinal amino α-tertiary alcohols. The racemic α-tertiary 1,2-diol substrates of different alkyl/aryl or alkyl/alkyl backbone, can be converted to chiral vicinal amino α-tertiary alcohols through diphenyl phosphate-mediated RuCl3 catalysed asymmetric borrowing hydrogen (ABH) pathway. This simple ABH reaction can be scaled up to the synthesis of chiral ligands, synthetic intermediates, and other medicinally-relevant compounds. Overall, this catalytic redox-neutral procedure broadens the scope of Ru-catalysed amination of alcohols and discloses an underexplored step- and atom-economical synthetic strategy for the synthesis of vicinal amino α-tertiary alcohols and provides a practicable alternative to the present benchmark procedures.
Collapse
Affiliation(s)
- Tariq Ali
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Tahir Rahman
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Shahida Perveen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Lingyun Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Perveen S, Ali T, Rahman T, Huda FNU, Wang L, Zhang J, Khan A. Catalytic Asymmetric Synthesis of β-Amino α-Tertiary Alcohol through Borrowing Hydrogen Amination. Org Lett 2025; 27:2622-2627. [PMID: 40048559 DOI: 10.1021/acs.orglett.5c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The first enantioconvergent transition-metal-catalyzed amination of racemic α-tertiary 1,2-diols providing access to vicinal β-amino α-tertiary alcohols is disclosed. The iridium-catalyzed amination reaction proceeds through a chiral phosphoric acid-mediated borrowing hydrogen pathway with excellent yields and enantioselectivities for a range of amine nucleophiles and α-tertiary 1,2-diols. An array of β-amino α-tertiary alcohols were obtained with high yields and enantioselectivities (50 examples with up to 91% yield and up to 99% ee). These important chiral amino alcohol products can be easily converted into chiral ligands and bioactive skeletons. Mechanistic investigations proposed a dynamic kinetic resolution pathway involving imine formation and then imine reduction as the enantiodetermining step.
Collapse
Affiliation(s)
- Shahida Perveen
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Tariq Ali
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Tahir Rahman
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Fatima Noor Ul Huda
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Lingyun Wang
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| |
Collapse
|
3
|
Cheng SJ, Zhang XL, Yang ZX, Wang AH, Ye ZS. Palladium-Catalyzed N-Allylic Alkylation of Pyrazoles and Unactivated Vinylcyclopropanes. Org Lett 2025; 27:46-50. [PMID: 39704564 DOI: 10.1021/acs.orglett.4c03808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
An efficient palladium-catalyzed N-allylic alkylation of pyrazoles and unactivated vinylcyclopropanes is demonstrated, affording various N-alkyl pyrazoles in ≤99% yield. This protocol displays high atom economy, a broad range of substrates, and excellent regioselectivity and stereoselectivity. Late-stage modification of bioactive molecules, scaled-up reaction, and divergent derivatization documented the practicability of this methodology. The preliminary mechanistic investigation hinted that the Pd-H species promotes the ring opening of cyclopropanes.
Collapse
Affiliation(s)
- Shao-Jie Cheng
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xin-Li Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhen-Xu Yang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ai-Hua Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhi-Shi Ye
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
4
|
Zambri MT, Grewal A, Lautens M, Taylor MS. Rhodium-Catalyzed Enantioselective Ring-Openings of Oxabicyclic Alkenes with Azole Nucleophiles. J Org Chem 2024; 89:16889-16898. [PMID: 39506192 DOI: 10.1021/acs.joc.4c02437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
We report enantioselective ring-openings of oxabicyclic alkenes with azole nucleophiles, generating heterocycle-bearing dihydronaphthalene products. Pyrazoles, triazoles, tetrazoles, and benzo-fused derivatives participate in the ring-opening, with the level of regioselectivity depending on the type and substitution pattern of the heterocyclic partner. Electron-withdrawing azole substituents have a beneficial effect, suppressing the unproductive complexation of a nitrogen with the Rh(I)-bis(phosphine) catalyst.
Collapse
Affiliation(s)
- Matthew T Zambri
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Armaan Grewal
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| |
Collapse
|
5
|
Wang L, Khan S, Perveen S, Zhang J, Khan A. Molybdenum Complex-Catalyzed N-Alkylation of Bulky Primary and Secondary Amines. J Org Chem 2024; 89:16510-16521. [PMID: 39491543 DOI: 10.1021/acs.joc.4c01754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Aliphatic allylic amines are present in a large number of complex and pharmaceutically relevant molecules. The direct amination of allylic electrophiles serves as the most common method toward the preparation of these motifs. However, the use of feedstock reaction components (allyl alcohol and aliphatic amine) in these transformations remains a great challenge. Such a challenge primarily stems from the high Lewis basicity and large steric hindrance of aliphatic amines, in addition to the low reactivity of allylic alcohols. Herein, we report a general solution to these challenges. The developed protocol allows an efficient allylic amination of allyl alcohols with sterically bulky aliphatic amines in the presence of an inexpensive earth-abundant molybdenum complex. This simple and economic protocol also enables regioselective branched amination; the practicality of the reaction was shown in an efficient, scaled-up synthesis of several drugs.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Shahid Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Shahida Perveen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| |
Collapse
|
6
|
Khan S, Zhang J, Khan A. Molybdenum-Catalyzed Regio- and Enantioselective Amination of Allylic Carbonates: Total Synthesis of ( S)-Clopidogrel. Org Lett 2024; 26:2758-2762. [PMID: 37515783 DOI: 10.1021/acs.orglett.3c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
The first molybdenum-catalyzed highly regio- and enantioselective allylic amination of both aryl- and alkyl-substituted branched allylic carbonates has been developed. A wide variety of amines, including drugs and complex bioactive molecules, underwent successful amination with excellent reaction outcomes (up to 96% yield, >99% ee, and >20:1 b/l). The reaction could be scaled up and has been applied to the total synthesis of chiral drug molecule (S)-clopidogrel (Plavix).
Collapse
Affiliation(s)
- Shahid Khan
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, P. R. China
| | - Junjie Zhang
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
7
|
Liu L, Luo R, Tong J, Liao J. Iridium-catalysed reductive allylic amination of α,β-unsaturated aldehydes. Org Biomol Chem 2024; 22:585-589. [PMID: 38131265 DOI: 10.1039/d3ob01753b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Allylic amination is a powerful tool for constructing N-allylic amines widely found in bioactive molecules. Generally, allylic alcohols and unsaturated hydrocarbons have been considered for allylic amination reactions to minimize waste production. Herein, we present an iridium-catalysed method for reductive allylic amination of α,β-unsaturated aldehydes with amines to afford N-allylic amines under air conditions. This protocol is demonstrated to provide products from many substrates (41 examples) in moderate-to-excellent yields. This synthetic methodology is also highlighted by the synthesis of drug molecules, optically pure products, as well as scale-up experiments.
Collapse
Affiliation(s)
- Liang Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| | - Renshi Luo
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan, 512005, Guangdong Province, P. R. China
| | - Jinghui Tong
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| | - Jianhua Liao
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| |
Collapse
|
8
|
Khan S, Salman M, Wang Y, Zhang J, Khan A. Green Chemistry Approach toward the Regioselective Synthesis of α,α-Disubstituted Allylic Amines. J Org Chem 2023; 88:11992-11999. [PMID: 37535841 DOI: 10.1021/acs.joc.3c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Molybdenum-catalyzed allylic substitution reactions are known to provide direct and practical ways to construct new carbon-carbon bonds and privileged compounds. However, due to the lack of reports on carbon-heteroatom bond formation as a common deficiency, these reactions still face a great challenge. Described herein is a robust and convenient molybdenum-catalyzed regioselective allylic amination of tertiary allylic carbonates with an amine as the heteroatom nucleophile. Both aromatic and aliphatic amines react with various tertiary allylic alcohol derivatives to deliver the desired α,α-disubstituted allylic amines in high yield with complete regioselectivity. In addition, ethanol as the green solvent, a recyclable catalyst system through simple centrifugation techniques, and simple handling procedures make the current approach green, economic, and sustainable.
Collapse
Affiliation(s)
- Shahid Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Muhammad Salman
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Yu Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| |
Collapse
|
9
|
Zambri MT, Hou TR, Taylor MS. Synergistic Organoboron/Palladium Catalysis for Regioselective N-Allylations of Azoles with Allylic Alcohols. Org Lett 2022; 24:7617-7621. [PMID: 36201424 DOI: 10.1021/acs.orglett.2c03084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method for regioselective palladium-catalyzed allylic alkylation of ambident nitrogen heterocycles, employing simple allylic alcohols as electrophile precursors, is described. An organoboron co-catalyst serves both to activate the azole-type nucleophile toward selective N-functionalization and to accelerate the formation of a π-allylpalladium complex from the allylic alcohol. The method can be applied to various heterocycle types, including 1,2,3- and 1,2,4-triazoles, tetrazoles, pyrazoles, and purines, and can be extended to substituted allylic alcohol partners.
Collapse
Affiliation(s)
- Matthew T Zambri
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Teh Ren Hou
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
10
|
Dokai Y, Saito K, Yamada T. Decarboxylative 1,2-rearrangement of cyclic carbonates promoted by Lewis acid. Chem Commun (Camb) 2022; 58:9500-9503. [PMID: 35920360 DOI: 10.1039/d2cc03024a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Lewis acid-mediated decarboxylative 1,2-rearrangement reaction of cyclic carbonates was developed. The selectivity of the migration in the decarboxylative 1,2-rearrangement of cyclic carbonates was opposite to that of the corresponding 1,2-diols under the same reaction conditions. This contrasting selectivity of the migration was confirmed in a variety of substrates.
Collapse
Affiliation(s)
- Yoichi Dokai
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Kodai Saito
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Tohru Yamada
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
11
|
Recent applications of vinylethylene carbonates in Pd-catalyzed allylic substitution and annulation reactions: Synthesis of multifunctional allylic and cyclic structural motifs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Wu H, Hu L, Shi Y, Shen Z, Huang G. Computational Insights into Palladium/Boron-Catalyzed Allylic Substitution of Vinylethylene Carbonates with Water: Outer-Sphere versus Inner-Sphere Pathway and Origins of Regio- and Enantioselectivities. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hongli Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Lingfei Hu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Yu Shi
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Zhen Shen
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
13
|
Wang Y, Xu Y, Khan S, Zhang Z, Khan A. Selective approach to N-substituted tertiary 2-pyridones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01065h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commercially available 2-hydroxypyridines are converted into enantiomerically enriched allylic 2-pyridones with elusive N-substituted tertiary carbon by means of Pd-catalyzed allylic amination of vinyl cyclic carbonates.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Yaoyao Xu
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Shahid Khan
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Zhunjie Zhang
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| |
Collapse
|
14
|
Functional CO2 based heterocycles as precursors in organic synthesis. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|