1
|
Wen M, Zhang M, Gu F, Geng Y, Liu X, Wu Q, Yang X. Synthesis of spiropyrans via Ru(II)-catalyzed coupling of 3-aryl-2 H-benzo[ b][1,4]oxazines with benzoquinones. Org Biomol Chem 2024; 22:998-1009. [PMID: 38186088 DOI: 10.1039/d3ob01971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
An efficient Ru(II)-catalyzed C-H activation-based spiroannulation of benzoxazines with the easily available benzoquinone and N-sulfonyl quinone monoimine has been realized, providing a straightforward strategy to access NH-containing spiropyrans in moderate to good yields with good functional group compatibility. The procedure features atom- and step-economy, mild conditions, and excellent chemoselectivity. Moreover, a catalytically competent five-membered cycloruthenated complex has been isolated.
Collapse
Affiliation(s)
- Mengke Wen
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Mengying Zhang
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Fan Gu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuehua Geng
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiangyang Liu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qingnan Wu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xifa Yang
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Jha RK, Batabyal M, Kumar S. Blue Light Irradiated Metal-, Oxidant-, and Base-Free Cross-Dehydrogenative Coupling of C( sp2)-H and N-H Bonds: Amination of Naphthoquinones with Amines. J Org Chem 2023. [PMID: 37171187 DOI: 10.1021/acs.joc.3c00666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Herein, we report a blue-light-driven amination of C(sp2)-H bond of naphthoquinones and quinones with the N-H bond of primary and secondary amines for the synthesis of 2-amino-naphthoquinones and 2-amino-quinones. The coupling of naphthoquinones with a wide array of aliphatic, aromatic, chiral, primary, and secondary amines having electron donating (-CH3, -OCH3, -SCH3), withdrawing (-F, -Cl, -Br, -I), and CO2H, -OH, -NH2 groups with acidic protons selectively occurred to afford C-N coupled 2-amino-naphthoquinones in 60-99% yields and hydrogen gas as a byproduct in methanol solvent without using any additional reagents, additives, and oxidant under the blue light irradiation. Mechanistic insight by DFT computation, controlled experiments, kinetic isotopic effect, and substitution effect of the substrates suggest that the reaction proceeds by radical pathway in which naphthoquinone forms a highly oxidizing naphthoquinonyl biradical upon irradiation of blue light (457 nm). Consequently, electron transfer from electron-rich amine to an oxidizing naphthoquinonyl biradical leads to a naphthoquinonyl radical anion and aminyl radical cation, followed by proton transfer and delocalization leading to a carbon-centered naphthoquinonyl radical. The cross-coupling of naphthoquinonyl carbon-centered and aminyl nitrogen radicals forms a C-N bond, with subsequent elimination of hydrogen gas (which was also confirmed by GC-TCD), affording 2-amino-1,4-naphthoquinone under metal-, reagent-, base-, and oxidant-free conditions.
Collapse
Affiliation(s)
- Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
3
|
Dong Y, Chen Y, Zhang ZY, Qian JH, Peng ZZ, Chang B, Shi ZC, Li ZH, He B. A one-pot access to 2-(N-substituted Amino)-Quinones or 3-indolyl-Quinones from naphthol/hydroquinone. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
4
|
Dong Y, Li ZH, He B, Jiang H, Chen XL, Ye JX, Zhou Q, Gao LS, Luo QQ, Shi ZC. Silver-Catalyzed One-Pot Biarylamination of Quinones with Arylamines: Access to N-Arylamine-Functionalized p-Iminoquinone Derivatives. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractConcise one-pot biarylamination of quinones with arylamines was developed to synthesize N-arylamine-functionalized p-iminoquinones derivatives. The approach employed AgOAc as the catalyst and (NH4)2S2O8 as the oxidant in the presence of 3-chlorophenylboronic acid, giving a series of N-arylamine-functionalized p-iminoquinone derivatives in moderate to good yields whereas reaction in the absence of the 3-chlorophenylboronic acid, gave a series of N-arylamine-functionalized 1,4-naphthoquinone derivatives. This catalytic approach represents a step-economic and convenient strategy for the difunctionalization of quinones.
Collapse
Affiliation(s)
- Yu Dong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Zhong-Hui Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Bing He
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Hui Jiang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Xiang-Long Chen
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Ji-Xian Ye
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Qiang Zhou
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Long-Sen Gao
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Qi-Qi Luo
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | | |
Collapse
|
5
|
Prasanna Kumari S, Philip Anthony S, Selva Ganesan S. One-pot synthesis of indole-fused nitrogen heterocycles via the direct C(sp 2)–H functionalization of naphthoquinones; accessibility for deep red emitting materials. NEW J CHEM 2022. [DOI: 10.1039/d2nj02024f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient one-pot, two-step methodology was developed for the transformation of readily available planar naphthoquinone derivatives into structurally complex indole-fused nitrogen heterocycles under aerobic conditions.
Collapse
Affiliation(s)
- Subramaniyan Prasanna Kumari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India
| | - Savarimuthu Philip Anthony
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India
| | - Subramaniapillai Selva Ganesan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India
| |
Collapse
|
6
|
Sharma A, Kour H, Kour J, Kamal K, Sawant SD. Visible-light-promoted iron catalyzed C‒H functionalization of 1,4-naphthoquinones via oxidative coupling with sulfoximines. Chem Commun (Camb) 2022; 58:11312-11315. [DOI: 10.1039/d2cc03319d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic oxidative addition of sulfoximines to naphthoquinones via its C-H functionalization has been achieved using iron catalytic system, which exhibits good reactivity and high regioselectivity in presence of visible...
Collapse
|
7
|
Pal S, Chatterjee R, Santra S, Zyryanov GV, Majee A. Metal‐Free, PhI(OAc)
2
‐Promoted Oxidative C(
sp
2
)−H Difunctionalization: Synthesis of Thioaminated Naphthoquinones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Satyajit Pal
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Rana Chatterjee
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute Ural Federal University 19 Mira Street 620002 Yekaterinburg Russian Federation
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute Ural Federal University 19 Mira Street 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22 S. Kovalevskoy Street 620219 Yekaterinburg Russian Federation
| | - Adinath Majee
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
8
|
Dong Y, Ye JX, Luo QQ, Mei T, Shen A, Huang P, Chen J, Zhang X, Xie C, Shi ZC. (NH4)2S2O8-Promoted Direct C–C Coupling of Indoles with Quinones/Hydroquinones without Catalyst. Synlett 2021. [DOI: 10.1055/s-0040-1720391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractAn atom-economical and environmentally benign approach for the synthesis of 3-indolylquinones was achieved successfully via direct oxidative C–C coupling of quinones/hydroquinones with indoles using (NH4)2S2O8 in dichloroethane at 80 °C. The efficiency of this catalytic approach was established by a broad scope of substrates involving quinones and hydroquinones to give high yields (61–93%) of 3-indolylquinones. The present protocol is simple, practical, and show good functional group tolerance. In addition, the obtained 3-indolylnaphthoquinones were conducted to further transformation to synthesize 2-amino-3-indolylnaphthoquinone and polycyclic N-heterocycles, respectively.
Collapse
Affiliation(s)
- Yu Dong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Ji-Xian Ye
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Qi-Qi Luo
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Ting Mei
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Ai Shen
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Peng Huang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Jia Chen
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Xia Zhang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | - Chun Xie
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University
| | | |
Collapse
|
9
|
Dong Y, Mei T, Ye JX, Chen XL, Jiang H, Chang B, Wang ZF, Shi ZC, Li ZH, He B. Assembly of polycyclic N-heterocycles via copper-catalyzed cycloamination of indolylquinones and aromatic amines. Org Biomol Chem 2021; 19:4593-4598. [PMID: 33961001 DOI: 10.1039/d1ob00666e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The copper-catalyzed cycloamination of indolylquinones and various (hetero)aromatic amines under ligand-free conditions for the synthesis of polycyclic N-heterocycles has been developed. This method allows facile access to polycyclic N-heterocycles with the tolerance of chloride, bromide, amino, thio, etc. groups in moderate to high yields (60-89%).
Collapse
Affiliation(s)
- Yu Dong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Ting Mei
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Ji-Xian Ye
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Xiang-Long Chen
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Hui Jiang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Bo Chang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Zhi-Fan Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Zhi-Chuan Shi
- Southwest Minzu University, Chengdu 610041, P. R. China
| | - Zhong-Hui Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Bing He
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| |
Collapse
|