1
|
Sparling C, Townsend D. Two decades of imaging photoelectron circular dichroism: from first principles to future perspectives. Phys Chem Chem Phys 2025; 27:2888-2907. [PMID: 39835524 DOI: 10.1039/d4cp03770g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
There has been a significant recent surge in the number of studies interrogating chiral molecules in the gas phase using photoelectron circular dichroism (PECD) and related techniques. These investigations have revealed new fundamental insights into the structure and dynamics of chiral species and, furthermore, have the potential to revolutionize the field of chiral analysis for more practical and industrial applications. As it has been just over 20 years since the first PECD imaging experiments were demonstrated - and 10 years since the last dedicated general perspective article on the topic - a new overview now seems extremely timely. This article will introduce PECD to the general reader and give a synopsis of developments in the field, focusing particularly on the last decade, where the use of multiphoton ionization schemes has brought PECD to a wider experimental audience. We will discuss the novel applications of the general methodology and highlight the challenges that must be overcome to fully cement PECD and adjacent techniques as powerful chiral analysis probes.
Collapse
Affiliation(s)
- Chris Sparling
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
2
|
Chevalier F, Schlathölter T, Poully JC. Radiation-Induced Transfer of Charge, Atoms, and Energy within Isolated Biomolecular Systems. Chembiochem 2023; 24:e202300543. [PMID: 37712497 DOI: 10.1002/cbic.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
In biological tissues, ionizing radiation interacts with a variety of molecules and the consequences include cell killing and the modification of mechanical properties. Applications of biological radiation action are for instance radiotherapy, sterilization, or the tailoring of biomaterial properties. During the first femtoseconds to milliseconds after the initial radiation action, biomolecular systems typically respond by transfer of charge, atoms, or energy. In the condensed phase, it is usually very difficult to distinguish direct effects from indirect effects. A straightforward solution for this problem is the use of gas-phase techniques, for instance from the field of mass spectrometry. In this review, we survey mainly experimental but also theoretical work, focusing on radiation-induced intra- and inter-molecular transfer of charge, atoms, and energy within biomolecular systems in the gas phase. Building blocks of DNA, proteins, and saccharides, but also antibiotics are considered. The emergence of general processes as well as their timescales and mechanisms are highlighted.
Collapse
Affiliation(s)
- François Chevalier
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| | - Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Groningen (The, Netherlands
- University College Groningen, University of Groningen, Groningen (The, Netherlands
| | - Jean-Christophe Poully
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| |
Collapse
|
3
|
Milešević D, Popat D, Gellersen P, Liu Z, Stimson J, Robertson P, Green A, Vallance C. Design and characterization of an optical-fiber-coupled laser-induced desorption source for gas-phase dynamics experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:114105. [PMID: 37987631 DOI: 10.1063/5.0170080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Preparation of neutral non-volatile molecules intact in the gas phase for mass spectrometry or chemical dynamics experiments remains a challenge for many classes of molecules. Here, we report the design and characterization of a fiber-coupled laser-based thermal desorption source capable of preparing intact neutral molecules at high molecular densities in the gas phase for use in velocity-map imaging experiments. Within this source, the sample is deposited onto a thin tantalum foil. Irradiation of the foil from the reverse side by a focused laser beam leads to highly localized heating of the sample, resulting in desorption of a plume of molecules into the gas phase. The fiber-coupled design simplifies the alignment of the desorption laser beam, and the ability to rotate the foil relative to the fixed laser beam allows the sample to be continually refreshed under vacuum. We use 118 nm photoionization of three test molecules-uracil, adenine, and phenylalanine-to characterize the source and to demonstrate various aspects of its performance. These include the dependence of the velocity-map imaging performance on the size of the interaction region and the dependence of the laser-induced desorption source emission on desorption laser power and heating time. Signal levels recorded in these measurements are comparable to those we typically obtain in similar experiments using a pulsed supersonic molecular beam, and we, therefore, believe that the source has considerable potential for use in a wide range of chemical dynamics and other experiments.
Collapse
Affiliation(s)
- Dennis Milešević
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Divya Popat
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Paul Gellersen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Zhihao Liu
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Joseph Stimson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Patrick Robertson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Andrew Green
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| |
Collapse
|
4
|
Izadi F, Szczyrba A, Datta M, Ciupak O, Demkowicz S, Rak J, Denifl S. Electron-Induced Decomposition of 5-Bromo-4-thiouracil and 5-Bromo-4-thio-2'-deoxyuridine: The Effect of the Deoxyribose Moiety on Dissociative Electron Attachment. Int J Mol Sci 2023; 24:8706. [PMID: 37240053 PMCID: PMC10217871 DOI: 10.3390/ijms24108706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
When modified uridine derivatives are incorporated into DNA, radical species may form that cause DNA damage. This category of molecules has been proposed as radiosensitizers and is currently being researched. Here, we study electron attachment to 5-bromo-4-thiouracil (BrSU), a uracil derivative, and 5-bromo-4-thio-2'-deoxyuridine (BrSdU), with an attached deoxyribose moiety via the N-glycosidic (N1-C) bond. Quadrupole mass spectrometry was used to detect the anionic products of dissociative electron attachment (DEA), and the experimental results were supported by quantum chemical calculations performed at the M062X/aug-cc-pVTZ level of theory. Experimentally, we found that BrSU predominantly captures low-energy electrons with kinetic energies near 0 eV, though the abundance of bromine anions was rather low compared to a similar experiment with bromouracil. We suggest that, for this reaction channel, proton-transfer reactions in the transient negative ions limit the release of bromine anions.
Collapse
Affiliation(s)
- Farhad Izadi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Adrian Szczyrba
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magdalena Datta
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Janusz Rak
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|