1
|
Wang X, Peng M, Wang Y, Song S, Xu Y, Chen L, Yu F. Eco-Friendly and Efficient Synthesis of 2-Hydroxy-3-Hydrazono-Chromones Through α, β-C(sp 2)-H Bond Difunctionalization/Chromone Annulation Reaction of o-Hydroxyaryl Enaminones, Water, and Aryldiazonium Salts. Molecules 2025; 30:1194. [PMID: 40141971 PMCID: PMC11944599 DOI: 10.3390/molecules30061194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
A novel, eco-friendly, and efficient method for constructing 2,3-disubstituted chromone skeletons from readily available water, o-hydroxyaryl enaminones (o-HPEs), and aryldiazonium salts has been developed under mild reaction conditions. This α,β-C(sp2)-H bond difunctionalization/chromone annulation reaction strategy is achieved by building two C(sp3)-O bonds and a C(sp2)-N bond, which provides a practical pathway for the preparation of 2-hydroxy-3-hydrazono-chromones in moderate to excellent yields, enabling broad substrate scope and good functional group tolerance, as well as gram-scale synthesis. This protocol offers a valuable tool for synthesizing diverse functionalized chromones with potential applications in drug discovery and industrial synthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.W.); (M.P.); (Y.W.); (S.S.); (Y.X.)
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.W.); (M.P.); (Y.W.); (S.S.); (Y.X.)
| |
Collapse
|
2
|
Lee JH, Kim YG, Kim Y, Lee J. Antifungal and antibiofilm activities of chromones against nine Candida species. Microbiol Spectr 2023; 11:e0173723. [PMID: 37874140 PMCID: PMC10714962 DOI: 10.1128/spectrum.01737-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/14/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE The persistence of Candida infections is due to its ability to form biofilms that enable it to resist antifungals and host immune systems. Hence, inhibitions of the biofilm formation and virulence characteristics of Candida sp. provide potential means of addressing these infections. Among various chromone derivatives tested, four chromone-3-carbonitriles showed antifungal, antibiofilm, and antivirulence activities against several Candida species. Their mode of action has been partially revealed, and their toxicity is reported here using nematode and plant models.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yeseul Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
3
|
Quindt MI, Gola GF, Ramirez JA, Bonesi SM. Light-Driven Two-Step Preparation of 4-Chromanone Fused to Estrone Derivatives. J Org Chem 2023; 88:13796-13812. [PMID: 37721803 DOI: 10.1021/acs.joc.3c01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
A protocol involving the irradiation of some 3-(2-alkenyl)estrone and 3-(2-alkenyl)-17-norestrone derivatives under a nitrogen atmosphere in organic solvents (both hexane and MeOH) followed by base-mediated intramolecular oxa-Michael cyclization reaction was investigated under steady-state conditions. The solvent effect and nature of the acyl group on the preparative photoreaction were studied and the multiplicity of the excited state was also demonstrated. The ortho-regioisomers were obtained in modest to good yields. Intramolecular based-mediate cyclization reaction of these synthons led to the formation of a set of novel substituted 4-chromanone moieties fused to estrone (and 17-norestrone) in good yields. This two-step sequential procedure involving a photochemical/intramolecular thermal cyclization strategy will be useful for the preparation of wide heterocyclic-fused-steroid compounds.
Collapse
Affiliation(s)
- Matías I Quindt
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET - Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Gabriel F Gola
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), CONICET - Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Javier A Ramirez
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), CONICET - Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Sergio M Bonesi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET - Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
4
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
5
|
Xing DX, Song XS, Pan WC, Cui H, Zhao ZX. New chromone compounds from the marine derived fungus Diaporthe sp. XW12-1. Fitoterapia 2023; 164:105384. [PMID: 36473537 DOI: 10.1016/j.fitote.2022.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Four new chromone compounds diaporspchromanones A-C (1-3) and diaporspchromanone H (4), together with three known compounds (5-7) were separated from the marine derived fungus Diaporthe sp. XW12-1. The structures of the new compounds, including their absolute configurations, were elucidated by extensive spectroscopic analysis and the Mosher's ester method. Among them, diaporspchromanones A-C (1-3) possess a 3-substituted-chroman-4-one skeleton, which are rarely found in natural sources. In the bioassays, all compounds were evaluated for their inhibitory activity against lipopolysaccharide-activated nitric oxide (NO) production in RAW264.7 cells. Compounds 2 and 3 showed potent anti-inflammatory effects than the positive control (indomethacin, IC50, 70.33 ± 0.95 μM) (p < 0.05) with IC50 values of 19.06 ± 3.60 and 9.56 ± 0.18 μM, respectively.
Collapse
Affiliation(s)
- Dan-Xia Xing
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xian-Shu Song
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wen-Cong Pan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China.
| | - Zhong-Xiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
6
|
The Synthesis, Fungicidal Activity, and in Silico Study of Alkoxy Analogues of Natural Precocenes I, II, and III. Molecules 2022; 27:molecules27217177. [DOI: 10.3390/molecules27217177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to synthesize, characterize, and explore the eco-friendly and antifungal potential of precocenes and their derivatives. The organic synthesis of the mono-O-alkyl-2,2-dimethyl 2H-1-chromene series, including the natural product precocene I, and the di-O-alkyl 2,2-dimethyl-2H-1-chromene series, including the natural 2H-1-chromenes precocenes II and III, was achieved. The synthetic compounds were subjected to spectroscopic analysis, 1HNMR,13CNMR, and mass characterization. The antifungal activity of synthesized precocenes I, II, and III, as well as their synthetic intermediates, was evaluated by the poison food technique. Precocene II (EC50 106.8 µg × mL−1 and 4.94 µg mL−1), and its regioisomers 7a (EC50 97.18 µg × mL−1 and 35.30 µg × mL−1) and 7d (EC50 170.58 × µg mL−1), exhibited strong fungitoxic activity against Aspergillus niger and Rhizoctonia solani. Some of the novel chromenes, 11a and 11b, which had never been evaluated before, yielded stronger fungitoxic effects. Finally, docking simulations for compounds with promising fungitoxic activity were subjected to structure–activity relationship analyses against the polygalactouronases and voltage-dependent anion channels. Conclusively, precocenes and their regioisomers demonstrated promising fungitoxic activity; such compounds can be subjected to minor structural modifications to yield promising and novel fungicides.
Collapse
|
7
|
Lai JR, Yin FD, Guo QS, Yuan F, Nian BF, Zhang M, Wu ZB, Zhang HB, Tang E. Silver-catalysed three-component reactions of alkynyl aryl ketones, element selenium, and boronic acids leading to 3-organoselenylchromones. Org Biomol Chem 2022; 20:5104-5114. [PMID: 35703142 DOI: 10.1039/d2ob00696k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Ag-catalysed three-component reaction of alkynyl aryl ketones bearing an ortho-methoxy group, element selenium, and arylboronic acid, providing a facile route to selenofunctionalized chromone products has been developed. This protocol features high efficiency and high regioselectivity, and the use of selenium powder as the selenium source. Mechanistic experiments indicated that the combined oxidative effect of (bis(trifluoroacetoxy)iodo)benzene and oxygen in the air pushes the catalytic redox cycle of the Ag catalyst and the phenylselenium trifluoroacetate formed in situ is the key intermediate of the PIFA-mediated 6-endo-electrophilic cyclization and selenofunctionalization reaction of alkynyl aryl ketones.
Collapse
Affiliation(s)
- Jin-Rong Lai
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Fu-Dan Yin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Qing-Song Guo
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Fei Yuan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Bei-Fang Nian
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Ming Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Zhi-Bang Wu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Hong-Bin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - E Tang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
8
|
Vargas DF, Kaufman TS, Larghi EL. Total Synthesis of Aqabamycin G, a Nitrophenyl Indolylmaleimide Marine Alkaloid from Vibrio sp. WMBA. J Org Chem 2022; 87:13494-13500. [PMID: 35324169 DOI: 10.1021/acs.joc.2c00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first total synthesis of the marine alkaloid aqabamycin G is disclosed. The synthetic sequence involved the stepwise addition to maleimide of an indole motif and a substituted diazo-benzenoid unit derived from acetaminophen. An alternative strategy using a protected phenol is also reported.
Collapse
Affiliation(s)
- Didier F Vargas
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
9
|
Chouchène N, Toumi A, Boudriga S, Edziri H, Sobeh M, Abdelfattah MAO, Askri M, Knorr M, Strohmann C, Brieger L, Soldera A. Antimicrobial Activity and DFT Studies of a Novel Set of Spiropyrrolidines Tethered with Thiochroman-4-one/Chroman-4-one Scaffolds. Molecules 2022; 27:582. [PMID: 35163847 PMCID: PMC8839074 DOI: 10.3390/molecules27030582] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 01/06/2023] Open
Abstract
A novel series of 14 spiropyrrolidines bearing thiochroman-4-one/chroman-4-one, and oxindole/acenaphthylene-1,2-dione moieties were synthesized and characterized by spectroscopic techniques, as well as by three X-ray diffraction studies, corroborating the stereochemistry. Quantum chemical calculations studies, using the DFT approach, were performed to rationalize the stereochemical outcome. These N-heterocycles were evaluated for their antibacterial and antifungal activities against some pathogenic organisms. Several compounds displayed moderate to excellent activity towards the screened microbe strains in the study compared to Amoxicillin (AMX), Ampicillin (AMP), and Amphotericin B. Furthermore, a structural activity relationship (SAR) was established considering the synthesized compounds. Pharmacokinetic studies reveal that these derivatives exhibit an acceptable predictive ADMET profile (Absorption, Distribution, Metabolism, Excretion and Toxicity) and good drug-likeness.
Collapse
Affiliation(s)
- Nourhène Chouchène
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia; (N.C.); (A.T.); (M.A.)
| | - Amani Toumi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia; (N.C.); (A.T.); (M.A.)
| | - Sarra Boudriga
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia; (N.C.); (A.T.); (M.A.)
| | - Hayet Edziri
- Laboratoire des Maladies Transmissibles et des Substances Biologiquement Actives, Faculté de Pharmacie, Monastir 5000, Tunisia;
| | - Mansour Sobeh
- AgroBioSciences Research, Mohammed VI Polytechnic University, Lot 660–Hay MoulayRachid, Ben Guerir 43150, Morocco;
| | | | - Moheddine Askri
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia; (N.C.); (A.T.); (M.A.)
| | - Michael Knorr
- Institut UTINAM-UMR CNRS 6213, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Carsten Strohmann
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (C.S.); (L.B.)
| | - Lukas Brieger
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (C.S.); (L.B.)
| | - Armand Soldera
- Laboratory of Physical Chemistry of Matter, Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|