1
|
Anil Kumar Y, Koyyada G, Ramachandran T, Kim JH, Hegazy HH, Singh S, Moniruzzaman M. Recent advancement in quantum dot-based materials for energy storage applications: a review. Dalton Trans 2023. [PMID: 37096427 DOI: 10.1039/d3dt00325f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The need for energy storage and conversion is growing as a result of the worsening consequences of climate change and the depletion of fossil fuels. Energy conversion and storage requirements are rising as a result of environmental problems including global warming and the depletion of fossil fuels. The key to resolving the energy crisis is anticipated to be the quick growth of sustainable energy sources including solar energy, wind energy, and hydrogen energy. In this review, we have focused on discussing various quantum dots (QDs) and polymers or nanocomposites used for SCs and have provided examples of each type's performance. Effective QD use has really led to increased performance efficiency in SCs. The use of quantum dots in energy storage devices, batteries, and various quantum dots synthesis have all been emphasized in a number of great literature articles. In this review, we have homed in on the electrode materials based on quantum dots and their composites for storage and quantum dot based flexible devices that have been published up to this point.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain-15551, United Arab Emirates.
| | - Ganesh Koyyada
- Department of Chemical Engineering, Yeungnam University, 214-1, Daehak-ro 280, Gyeongsan 712-749, Gyeongbuk-do, Republic of Korea.
| | - Tholkappiyan Ramachandran
- Department of Physics, College of Science, United Arab Emirates University, Al Ain-15551, United Arab Emirates.
| | - Jae Hong Kim
- Department of Chemical Engineering, Yeungnam University, 214-1, Daehak-ro 280, Gyeongsan 712-749, Gyeongbuk-do, Republic of Korea.
| | - H H Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P. O. Box 9004, Abha, Saudi Arabia
- Researcher Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Sangeeta Singh
- Microelectronics and VLSI Design Lab, National Institute of Technology Patna, India
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
2
|
Anil Kumar Y, Koyyada G, Ramachandran T, Kim JH, Sajid S, Moniruzzaman M, Alzahmi S, Obaidat IM. Carbon Materials as a Conductive Skeleton for Supercapacitor Electrode Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1049. [PMID: 36985942 PMCID: PMC10057628 DOI: 10.3390/nano13061049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Supercapacitors have become a popular form of energy-storage device in the current energy and environmental landscape, and their performance is heavily reliant on the electrode materials used. Carbon-based electrodes are highly desirable due to their low cost and their abundance in various forms, as well as their ability to easily alter conductivity and surface area. Many studies have been conducted to enhance the performance of carbon-based supercapacitors by utilizing various carbon compounds, including pure carbon nanotubes and multistage carbon nanostructures as electrodes. These studies have examined the characteristics and potential applications of numerous pure carbon nanostructures and scrutinized the use of a wide variety of carbon nanomaterials, such as AC, CNTs, GR, CNCs, and others, to improve capacitance. Ultimately, this study provides a roadmap for producing high-quality supercapacitors using carbon-based electrodes.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Ganesh Koyyada
- Department of Chemical Engineering, Yeungnam University, 214-1 Daehak-ro 280, Gyeongsan 712-749, Gyeongbuk-do, Republic of Korea
| | - Tholkappiyan Ramachandran
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Physics, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Jae Hong Kim
- Department of Chemical Engineering, Yeungnam University, 214-1 Daehak-ro 280, Gyeongsan 712-749, Gyeongbuk-do, Republic of Korea
| | - Sajid Sajid
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Salem Alzahmi
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Ihab M. Obaidat
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Physics, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
3
|
Hamidouche F, Sanad MM, Ghebache Z, Boudieb N. Effect of polymerization conditions on the physicochemical and electrochemical properties of SnO2/polypyrrole composites for supercapacitor applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|