1
|
Zhu JN, Liu ML, He QH, Ding HY. Endophytic microorganisms in lichen: rising stars in the biomedicine field deserving broader recognition. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-19. [PMID: 40433762 DOI: 10.1080/10286020.2025.2501030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025]
Abstract
Lichens are renowned for their ability to thrive in extreme environments and for producing unique metabolites with considerable bioactive potential. However, their medicinal value remains largely underexplored, primarily due to slow growth rates and habitat specificity. Notably, endolichenic microorganisms, particularly fungi, are the predominant producers of these bioactive compounds, which exhibit antimicrobial, antiviral, and anticancer properties. Investigating these microorganisms and their metabolites presents promising biomedical opportunities, underscoring the importance of sustainably utilizing lichen resources and discovering novel compounds. This paper reviews the diversity and bioactive potential of endophytic microorganisms in lichens, providing valuable insights for the exploration of natural resources.
Collapse
Affiliation(s)
- Jia-Na Zhu
- School of Public Health, Dali University, Dali, China
| | - Meng-Long Liu
- School of Public Health, Dali University, Dali, China
| | - Qiu-Hua He
- School of Public Health, Dali University, Dali, China
| | - Hai-Yan Ding
- School of Public Health, Dali University, Dali, China
| |
Collapse
|
2
|
Yu M, Chen S, Shi J, Chen W, Qiu Y, Lan J, Qu S, Feng J, Wang R, Lin F, Huang G, Zheng C. Structures and Biological Activities of Secondary Metabolites from Daldinia spp. J Fungi (Basel) 2024; 10:833. [PMID: 39728329 DOI: 10.3390/jof10120833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
The genus Daldinia have long been recognized as a source of structural novel, pharmaceutically relevant natural products. We reviewed the structures and activities of secondary metabolites isolated from the genus of Daldinia from January 1995 to June 2024, and 280 compounds, including six major categories-terpenoids, alkaloids, polyketides, polyphenols, steroids, and other classes-are presented in this review. Among these metabolites, 196 were identified as new structures. Remarkably, 112 compounds exhibited a range of biological activities, including cytotoxic, antimicrobial, anti-inflammatory, antifungal, anti-virus, and enzyme-inhibitory activities. This review highlights the bioactive metabolites discovered in the past three decades from the genus of Daldinia while also exploring the potential of these symbiotic fungi as rich sources of novel and diverse natural products. The varying bioactivities of these metabolites offer a vast array of promising lead compounds and also could significantly contribute to the development of new medicines.
Collapse
Affiliation(s)
- Miao Yu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Shiji Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jueying Shi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Weikang Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Yikang Qiu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jing Lan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Shiyan Qu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Jiayi Feng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Ru Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Fangru Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Guolei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| |
Collapse
|
3
|
Gaspar A, Garrido EMP, Borges F, Garrido JM. Biological and Medicinal Properties of Natural Chromones and Chromanones. ACS OMEGA 2024; 9:21706-21726. [PMID: 38799321 PMCID: PMC11112580 DOI: 10.1021/acsomega.4c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Emerging threats to human health require a concerted effort to search for new treatment therapies. One of the biggest challenges is finding medicines with few or no side effects. Natural products have historically contributed to major advances in the field of pharmacotherapy, as they offer special characteristics compared to conventional synthetic molecules. Interest in natural products is being revitalized, in a continuous search for lead structures that can be used as models for the development of new medicines by the pharmaceutical industry. Chromone and chromanones are recognized as privileged structures and useful templates for the design of diversified therapeutic molecules with potential pharmacological interest. Chromones and chromanones are widely distributed in plants and fungi, and significant biological activities, namely antioxidant, anti-inflammatory, antimicrobial, antiviral, etc., have been reported for these compounds, suggesting their potential as lead drug candidates. This review aims to update the literature published over the last 6 years (2018-2023) regarding the natural occurrence and biological activity of chromones and chromanones, highlighting the recent findings and the perspectives that they hold for future research and applications namely in health, cosmetic, and food industries.
Collapse
Affiliation(s)
- Alexandra Gaspar
- CIQUP-IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169−007 Porto, Portugal
| | | | - Fernanda Borges
- CIQUP-IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169−007 Porto, Portugal
| | | |
Collapse
|
4
|
Zhang W, Ran Q, Li H, Lou H. Endolichenic Fungi: A Promising Medicinal Microbial Resource to Discover Bioactive Natural Molecules-An Update. J Fungi (Basel) 2024; 10:99. [PMID: 38392771 PMCID: PMC10889713 DOI: 10.3390/jof10020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Lichens are some of the most unique fungi and are naturally encountered as symbiotic biological organisms that usually consist of fungal partners (mycobionts) and photosynthetic organisms (green algae and cyanobacteria). Due to their distinctive growth environments, including hot deserts, rocky coasts, Arctic tundra, toxic slag piles, etc., they produce a variety of biologically meaningful and structurally novel secondary metabolites to resist external environmental stresses. The endofungi that live in and coevolve with lichens can also generate abundant secondary metabolites with novel structures, diverse skeletons, and intriguing bioactivities due to their mutualistic symbiosis with hosts, and they have been considered as strategically significant medicinal microresources for the discovery of pharmaceutical lead compounds in the medicinal industry. They are also of great importance in the fundamental research field of natural product chemistry. In this work, we conducted a comprehensive review and systematic evaluation of the secondary metabolites of endolichenic fungi regarding their origin, distribution, structural characteristics, and biological activity, as well as recent advances in their medicinal applications, by summarizing research achievements since 2015. Moreover, the current research status and future research trends regarding their chemical components are discussed and predicted. A systematic review covering the fundamental chemical research advances and pharmaceutical potential of the secondary metabolites from endolichenic fungi is urgently required to facilitate our better understanding, and this review could also serve as a critical reference to provide valuable insights for the future research and promotion of natural products from endolichenic fungi.
Collapse
Affiliation(s)
- Wenge Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Qian Ran
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Hehe Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
5
|
Lima JPO, da Fonseca AM, Marinho GS, da Rocha MN, Marinho EM, dos Santos HS, Freire RM, Marinho ES, de Lima-Neto P, Fechine PBA. De novo design of bioactive phenol and chromone derivatives for inhibitors of Spike glycoprotein of SARS-CoV-2 in silico. 3 Biotech 2023; 13:301. [PMID: 37588795 PMCID: PMC10425314 DOI: 10.1007/s13205-023-03695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/29/2023] [Indexed: 08/18/2023] Open
Abstract
This work presents the synthesis of 12 phenol and chromone derivatives, prepared by the analogs, and the possibility of conducting an in silico study of its derivatives as a therapeutic alternative to combat the SARS-CoV-2, pathogen responsible for COVID-19 pandemic, using its S-glycoprotein as a macromolecular target. After the initial screening for the ranking of the products, it was chosen which structure presented the best energy bond with the target. As a result, derivative 4 was submitted to a molecular growth study using artificial intelligence, where 8436 initial structures were obtained that passed through the interaction filters and similarity to the active glycoprotein pocket through the MolAICal computational package. Thus, 557 Hits with active configuration were generated, which is very promising compared to the BLA reference link for inhibiting the biological target. Molecular dynamics also simulated these compounds to verify their stability within the active protein site to seek new therapeutic propositions to fight against the pandemic. The Hit 48 and 250 are the most active compounds against SARS-CoV-2. In summary, the results show that the Hit 250 would be more active than the natural compound, which could be further developed for further testing against SARS-CoV-2. The study employs the de novo approach to design new drugs, combining artificial intelligence and molecular dynamics simulations to create efficient molecular structures. This research aims to contribute to the development of effective therapeutic strategies against the pandemic.
Collapse
Affiliation(s)
- Joan Petrus Oliveira Lima
- Advanced Materials Chemistry Group (GQMat)-Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará 60455-970 Brazil
| | - Aluísio Marques da Fonseca
- Mestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis-MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE 62785-000 Brazil
| | - Gabrielle Silva Marinho
- Faculdade de Filosofia Dom Aureliano Matos-FAFIDAM, Universidade Estadual do Ceará, Centro, Limoeiro do Norte, CE 62930-000 Brazil
| | - Matheus Nunes da Rocha
- Faculdade de Filosofia Dom Aureliano Matos-FAFIDAM, Universidade Estadual do Ceará, Centro, Limoeiro do Norte, CE 62930-000 Brazil
| | - Emanuelle Machado Marinho
- Advanced Materials Chemistry Group (GQMat)-Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará 60455-970 Brazil
| | | | | | - Emmanuel Silva Marinho
- Faculdade de Filosofia Dom Aureliano Matos-FAFIDAM, Universidade Estadual do Ceará, Centro, Limoeiro do Norte, CE 62930-000 Brazil
| | - Pedro de Lima-Neto
- Advanced Materials Chemistry Group (GQMat)-Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará 60455-970 Brazil
| | - Pierre Basílio Almeida Fechine
- Advanced Materials Chemistry Group (GQMat)-Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus Pici, Fortaleza, Ceará 60455-970 Brazil
| |
Collapse
|
6
|
Gu G, Zhang T, Zhao J, Zhao W, Tang Y, Wang L, Cen S, Yu L, Zhang D. New dimeric chromanone derivatives from the mutant strains of Penicillium oxalicum and their bioactivities. RSC Adv 2022; 12:22377-22384. [PMID: 36105983 PMCID: PMC9364356 DOI: 10.1039/d2ra02639b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Three new chromanone dimer derivatives, paecilins F-H (1-3) and ten known compounds (4-13), were obtained from the mutant strains of Penicillium oxalicum 114-2. Their structures were elucidated by extensive analysis of spectroscopic data and comparison with reported data, and the configurations of 1-3 were resolved by quantum chemical calculations of NMR shifts and ECD spectra. Compounds 5 and 11 showed significant anti-influenza A virus activities with IC50 values of 5.6 and 6.9 μM, respectively. Compounds 8 and 9 displayed cytotoxic activities against the MIA-PaCa-2 cell line with IC50 values of 2.6 and 2.1 μM, respectively. Compound 10 exhibited antibacterial activities against Bacillus cereus with a MIC value of 4 μg mL-1.
Collapse
Affiliation(s)
- Guowei Gu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P. R. China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P. R. China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P. R. China
| | - Wuli Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P. R. China
| | - Yan Tang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P. R. China
- School of Pharmacy, Yantai University Yantai 264005 P. R. China
| | - Lu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P. R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P. R. China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P. R. China
| | - Dewu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P. R. China
| |
Collapse
|