1
|
Bi WZ, Geng Y, Zhang WJ, Li CY, Ni CS, Ma QJ, Feng SX, Chen XL, Qu LB. Highly sensitive and selective detection of triphosgene with a 2-(2'-hydroxyphenyl)benzimidazole derived fluorescent probe. RSC Adv 2023; 13:30771-30776. [PMID: 37869386 PMCID: PMC10587890 DOI: 10.1039/d3ra06061f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
In this work, a 2-(2'-hydroxyphenyl)benzimidazole derived fluorescent probe, 2-(2'-hydroxy-4'-aminophenyl)benzimidazole (4-AHBI), was synthesized and its fluorescent behavior toward triphosgene were evaluated. The results showed that 4-AHBI exhibited high sensitivity (limit of detection, 0.08 nM) and excellent selectivity for triphosgene over other acyl chlorides including phosgene in CH2Cl2 solution. Moreover, 4-AHBI loaded test strips were prepared for the practical sensing of triphosgene.
Collapse
Affiliation(s)
- Wen-Zhu Bi
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou China 450046
| | - Yang Geng
- Department of Pharmacy, Zhengzhou Railway Vocational and Technical College Zhengzhou 450046 China
| | - Wen-Jie Zhang
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
| | - Chen-Yu Li
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
| | - Chu-Sen Ni
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
| | - Qiu-Juan Ma
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou China 450046
| | - Su-Xiang Feng
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou China 450046
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine Zhengzhou 450046 China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of P. R. China Zhengzhou 450046 China
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University Zhengzhou 450052 China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
2
|
Fontes LFB, Rocha J, Silva AMS, Guieu S. Excited-State Proton Transfer in Luminescent Dyes: From Theoretical Insight to Experimental Evidence. Chemistry 2023; 29:e202301540. [PMID: 37450664 DOI: 10.1002/chem.202301540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The effective utilization of luminescent dyes often relies on a comprehensive understanding of their excitation and relaxation pathways. One such pathway, Excited-State Proton Transfer (ESPT), involves the tautomerization of the dye in its excited state, resulting in a new structure that exhibits distinct emission properties, such as a very large Stokes' shift or dual-emission. Although the ESPT phenomenon is well-explained theoretically, its experimental demonstration can be challenging due to the presence of numerous other phenomena that can yield similar experimental observations. In this review, we propose that an all-encompassing methodology, integrating experimental findings, computational analyses, and a thorough evaluation of diverse mechanisms, is essential for verifying the occurrence of ESPT in luminescent dyes. Investigations have offered significant understanding of the elements impacting the ESPT process and the array of approaches that can be used to validate the existence of ESPT. These discoveries hold crucial ramifications for the advancement of molecular probes, sensors, and other applications that depend on ESPT as a detection mechanism.
Collapse
Affiliation(s)
- Luís F B Fontes
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
- CICECO-Aveiro Institute of Materials & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João Rocha
- CICECO-Aveiro Institute of Materials & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Samuel Guieu
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
- CICECO-Aveiro Institute of Materials & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Zhao J, Zhang H, Fan L, Li F, Song P. Unveiling and regulating the solvent-polarity-associated excited state intramolecular double proton transfer behavior for 1-bis(benzothiazolyl)naphthalene-diol fluorophore. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122831. [PMID: 37182250 DOI: 10.1016/j.saa.2023.122831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Inspired by the regulatory luminescence properties of HBT derivatives, in this work, we mainly conduct a detailed theoretical exploration on the photoinduced excitation behavior of a novel di-proton-transfer type HBT derivative 1-bis(benzothiazolyl)naphthalene-diol (1-BBTND). The intramolecular double hydrogen bonding interaction and the excited state intramolecular double proton transfer (ESDPT) behavior of 1-BBTND fluorophore are investigated in combination with different polar solvent environments. From the structural changes and charge recombination induced by photoexcitation, we can conclude that strong polar solvent environment promotes the excited state dynamical reaction for 1-BBTND compound. By constructing potential energy surfaces (PESs) in S0 and S1 states, we clarify that 1-BBTND fluorophore should undergo a stepwise ESDPT reaction after photoexcitation. Combined with the size of potential energy barriers along with reaction paths in different solvents, we finally propose a new solvent-polarity-dependent stepwise ESDPT for 1-BBTND fluorophore.
Collapse
Affiliation(s)
- Jinfeng Zhao
- College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China.
| | - Haohua Zhang
- College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Liming Fan
- College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Fangyu Li
- College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Peng Song
- Department of Physics, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
4
|
Zhao J, Jin B, Tang Z. Unraveling photo-induced proton transfer mechanism and proposing solvent regulation manner for the two intramolecular proton-transfer-site BH-BA fluorophore. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122141. [PMID: 36446171 DOI: 10.1016/j.saa.2022.122141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/31/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
To expound specific excited state processes of the novel excitation wavelength dependent emission BH-BA fluorophore for better subsequent applications, this wok mainly focus on exploring photo-induced hydrogen bonding geometrical changes, excited state intramolecular proton transfer (ESIPT) mechanism and related regulated behavior via solvent polarity. The differences of structural parameters, infrared (IR) vibrational spectra, core-valence bifurcation (CVB) index as well as electronic densities ρ(r) between S0 and S1 states related to dual hydrogen bonds (O1-H2···N3 and O4-H5···N6) reveal S1-state hydrogen bonding strength facilitate ESIPT behaviors for BH-BA system. Of particular note, O4-H5···N6 plays a more dominant role. Photo-induced intramolecular charge transfer (ICT) and variations of Hirshfled and NPA charges over atoms related to hydrogen bonding moieties promote the ESIPT tendency for BH-BA. Combined potential energy surfaces (PESs), transition state (TS) and intrinsic reaction coordinate (IRC) paths, we illustrate the excited state intramolecular single proton transfer (ESISPT) mechanism of BH-BA should occur along with O4-H5···N6 hydrogen bonding wire, which could be adjusted by surrounding solvent polarity.
Collapse
Affiliation(s)
- Jinfeng Zhao
- College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China; Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| | - Bing Jin
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Zhe Tang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China; Tianjin Key Laboratory of Drug Targeting and Bioimaging,Life and Health Intelligent Research Institute, Tianjin University of Technology Tianjin 300384,China.
| |
Collapse
|
5
|
Zhao J, Song P, Feng L, Wang X, Tang Z. Theoretical insights into atomic-electronegativity-regulated ESIPT behavior for B-bph-fla-OH fluorophore. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Zhang Y, Yuan X, Zhu X, Zhang D, Liu H, Sun B. Dandelion-like covalent organic frameworks with high-efficiency fluorescence for ratiometric sensing and visual tracking-by-detection of Fe 3. Anal Chim Acta 2023; 1239:340671. [PMID: 36628754 DOI: 10.1016/j.aca.2022.340671] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Iron ions, one of the most common heavy metal pollutants in industrial waste materials, are continuously actively or passively delivered to the environment. Meanwhile, the importance of Fe3+ in biological processes in vivo can not be neglected due to its crucial role in maintaining normal physiological function. Therefore, a ratiometric fluorescence covalent organic framework (TD-COF) was constructed for tracking-by-detection of Fe3+. Alkynes-extended 1,3,6,8-tetrakis(4-ethynyl benzaldehyde)-pyrene (TEBPY) with complete planar structure and 2,5-dihydroxyterephthalohydrazide (DHTH) with functional group -OH were selected as the building blocks. The ratiometric fluorescence TD-COF with a dandelion-like structure exhibited its dual emission peaked at 510 nm and 630 nm. It displayed an obvious fluorescence color variation of yellow-red-black in the presence of Fe3+. Benefiting from the high luminescent efficiency (QY of 36.4%) and multiple identical binding sites, TD-COF exhibited a wide linear range to Fe3+ (0.005-50 μM) with a detection limit of 10.9 nM. Additionally, a smartphone visual sensing platform integrated with TD-COF was developed based on the color transformation and successfully applied to visual smart real-time monitoring Fe3+. More surprisingly, the maximum adsorption capacity of TD-COF towards Fe3+ was 833.3 mg/g due to the coordination interaction and cationic π-effect. The practicability of the smartphone-integrated ratiometric sensing platform for visual tracking-by-detection of Fe3+ was verified by choosing tap water as the actual sample, and the recoveries were calculated to be 98.71-100.88%. This work thus developed COF-based ratiometric sensing of Fe3+, which is an attractive candidate for further application in fluorescent sensing and visual monitoring.
Collapse
Affiliation(s)
- Ying Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, PR China
| | - Xinyue Yuan
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, PR China
| | - Xuecheng Zhu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, PR China
| | - Dianwei Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, PR China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, PR China.
| | - Baoguo Sun
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing, 100048, PR China
| |
Collapse
|
7
|
Yuan H, Zhang P, Zhan H, Zhang H, Sun X, Wang Y, Zhang H. Theoretical investigation of turn off–on mechanism of a new fluorescence probe L. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Cao Y, Shang C, Zheng Z, Sun C. Substituent derivatives of benzothiazole-based fluorescence probes for hydrazine with conspicuous luminescence properties: A theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121449. [PMID: 35660153 DOI: 10.1016/j.saa.2022.121449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/02/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
In the present work, four probe molecules for detecting hydrazine have been designed based on the 2-(4-Acetoxy-3-benzothiazole-2-yl-phenyl)-4-methyl-thiazole- 5-carboxylic acid ethyl ester (HP1) to investigate the influence of the amino and cyano groups on the excited-state intramolecular proton transfer (ESIPT) behavior and photophysical properties. The changes in hydrogen bond strength indicate that the intramolecular hydrogen bond of all probe products is enhanced upon photoexcitation. Frontier molecular orbitals (FMOs) and natural bond orbital (NBO) reveal the driving force of ESIPT. In addition, the potential energy curves and transition state theory explain the reason for the single fluorescence phenomenon in the experiment. The simulated absorption and fluorescence spectra of HP1 and its product (HPP1) are completely consistent with the experimental results, which also verify the viewpoint. Meanwhile the cyano derivative HPP4 exhibits a larger Stokes-shift (201 nm) than that of HPP1 (145 nm) and has the same low energy barrier as HPP1. These excellent properties allow HPP4 to be a fluorescent probe with superior performance than the original molecule. In conclusion, this work can provide a theoretical basis for the design and synthesis of more sensitive fluorescent probes for the detection of hydrazine.
Collapse
Affiliation(s)
- Yunjian Cao
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Changjiao Shang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Zefei Zheng
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
9
|
Jia M, Xu K, Lv J, Yang D. Theoretical study of the atomic electronegativity effects on the ESIPT of 4-methoxy-3-hydroxyflavone derivatives. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Zhang X, Yuan H, Li Y. Theoretical investigation into the deciphering effects of atomic electronegativity on 2‐hydroxy‐phenyl‐tafamidis: A time‐dependent density functional theory study. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoyu Zhang
- School of Mechanical and Vehicular Engineering Jilin Engineering Normal University Changchun China
| | - Hengyi Yuan
- School of Mechanical and Vehicular Engineering Jilin Engineering Normal University Changchun China
| | - Yi Li
- School of Mechanical and Vehicular Engineering Jilin Engineering Normal University Changchun China
| |
Collapse
|
11
|
Yang D, Yang W, Tian Y, Zheng R. Regulating the excited state behaviors of 2-benzooxazol-2-yl-4,6-di-tert-butyl-phenol fluorophore by solvent polarity: a theoretical simulation. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Zhang X, Shi H, Ji C, Wang J, Jiang L. Computational exploration for possible reaction pathways, regioselectivity, and influence of substrate in gold-catalyzed cycloaddition of cyanamides with enynamides. RSC Adv 2022; 12:22939-22945. [PMID: 36105958 PMCID: PMC9377310 DOI: 10.1039/d2ra02682a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
The current work focuses on the DFT calculation of the rational mechanism and catalytic activity of the gold(i)-catalyzed isotetradehydro-Diels–Alder cycloaddition of cyanamides and enamides to substituted 2,6-diaminopyridines. IPrAuCl is used as a model catalyst to catalyze cyanamide and enynamide reactants with different substituents in DCM as a research system. DFT data indicates that the catalytic cycle starts from the triple bond coordination between the catalyst's gold cation and the enamide to obtain the gold π-complex, and the cyanamide attacks the alkynyl carbon atom from different directions to generate two reaction channels of five-membered and six-membered heterocycles, respectively. The calculation results show that the 2,6-diaminopyridine compounds produced by this catalytic reaction have lower activation energy and higher reactivity, that is, the pyridine skeleton structure can be easily obtained under mild reaction conditions. At the same time, electron-withdrawing substituents in the reactants are more helpful for the reaction. In addition to being in good agreement with the experimental data, the calculated results also provide an important contribution to the further understanding of the mechanism of such reactions. The current work focuses on the DFT calculation of the rational mechanism and catalytic activity of the gold(i)-catalyzed isotetradehydro-Diels–Alder cycloaddition of cyanamides and enamides to substituted 2,6-diaminopyridines.![]()
Collapse
Affiliation(s)
- Xinghui Zhang
- School of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730010, China
| | - Haixiong Shi
- School of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730010, China
| | - Caihong Ji
- School of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730010, China
| | - Jianyi Wang
- School of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730010, China
| | - Liping Jiang
- School of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730010, China
| |
Collapse
|