1
|
Wang T, Zhao W, Miao Y, Cui A, Gao C, Wang C, Yuan L, Tian Z, Meng A, Li Z, Zhang M. Enhancing Defect-Induced Dipole Polarization Strategy of SiC@MoO 3 Nanocomposite Towards Electromagnetic Wave Absorption. NANO-MICRO LETTERS 2024; 16:273. [PMID: 39147921 PMCID: PMC11327238 DOI: 10.1007/s40820-024-01478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024]
Abstract
Defect engineering in transition metal oxides semiconductors (TMOs) is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials. However, achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive, posing a substantial challenge to the advancement of TMOs absorbers. The current research describes a process for the deposition of a MoO3 layer onto SiC nanowires, achieved via electro-deposition followed by high-temperature calcination. Subsequently, intentional creation of oxygen vacancies within the MoO3 layer was carried out, facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material. Remarkably, the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of - 50.49 dB at a matching thickness of 1.27 mm. Furthermore, the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm, comprehensively covering the entire Ku band. These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness. SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO3 nanocomposite. The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution, which in turn enhances conductivity loss and induced polarization loss capacity. This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.
Collapse
Affiliation(s)
- Ting Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Wenxin Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yukun Miao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Anguo Cui
- Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061, People's Republic of China
| | - Chuanhui Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Chang Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Liying Yuan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Zhongning Tian
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Alan Meng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| | - Meng Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
2
|
Li CF, Guo RT, Zhang ZR, Wu T, Liu YL, Zhou ZC, Aisanjiang M, Pan WG. Constructing CoAl-LDO/MoO 3-x S-scheme heterojunctions for enhanced photocatalytic CO 2 reduction. J Colloid Interface Sci 2023; 650:983-993. [PMID: 37453322 DOI: 10.1016/j.jcis.2023.07.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Converting CO2 into chemicals and fuels by solar energy can alleviate global warming and solve the energy crisis. In this work, CoAl-LDO/MoO3-x (LDO/MO) composites were successfully prepared and achieved efficient CO2 reduction under visible light. The CoAl-layered double oxides (CoAl-LDO) evolved from CoAl-layered double hydroxide (CoAl-LDH) exhibited a more robust structure, broader light absorption, and improved CO2 adsorption ability. The local surface plasmon resonance (LSPR) effect excited by nonstoichiometric MoO3-x broadened the photo-response range of CoAl-LDO/MoO3-x. In addition, constructing step-scheme (S-scheme) heterojunctions could simultaneously optimize the migration mechanism of photogenerated electrons and holes, and retain carriers with strong redox ability. Therefore, the production rates of CO and CH4 on the optimal LDO/MO composite were 7 and 9 times higher than the pristine CoAl-LDH, respectively. This work hybridizes oxidation photocatalysts and LDO-based materials to optimize the charge separation and migration mechanisms, which guides the modification of LDO-based materials.
Collapse
Affiliation(s)
- Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China; Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China; Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai 200090, People's Republic of China.
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Tong Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Yi-Lei Liu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Zong-Chang Zhou
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Maitiyasheng Aisanjiang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China; Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China; Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai 200090, People's Republic of China.
| |
Collapse
|
3
|
Song T, Xie C, Che Q, Yang P. Enhanced carrier separation in g-C3N4/MoO3-x heterostructures towards efficient phenol removal. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
The Advanced Synthesis of MOFs-Based Materials in Photocatalytic HER in Recent Three Years. Catalysts 2022. [DOI: 10.3390/catal12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the advent of metal–organic frameworks (MOFs), researchers have paid extensive attention to MOFs due to their determined structural composition, controllable pore size, and diverse physical and chemical properties. Photocatalysis, as a significant application of MOFs catalysts, has developed rapidly in recent years and become a research hotspot continuously. Various methods and approaches to construct and modify MOFs and their derivatives can not only affect the structure and morphology, but also largely determine their properties. Herein, we summarize the advanced synthesis of MOFs-based materials in the field of the photocatalytic decomposition of water to produce hydrogen in the recent three years. The main contents include the overview of the novel synthesis strategies in four aspects: internal modification and structure optimization of MOFs materials, MOFs/semiconductor composites, MOFs/COFs-based hybrids, and MOFs-derived materials. In addition, the problems and challenges faced in this direction and the future development goals were also discussed. We hope this review will help deepen the reader’s understanding and promote continued high-quality development in this field.
Collapse
|