1
|
Sharma KS, Thadem N, Pandey G. Visible-Light-Induced Secondary Benzylic C(sp 3)-H Functionalization for Nucleophilic Substitution: An Intermolecular C-X (C-N, C-C, and C-Br) Bond Forming Reaction. J Org Chem 2025; 90:3384-3390. [PMID: 39999344 DOI: 10.1021/acs.joc.4c03052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Exploring new synthetic methods that harness visible light represents a breakthrough in organic synthesis. Amides, amines, nitriles, and halides are essential functional groups and serve as key building blocks in the synthesis of complex molecules in organic and medicinal chemistry. This study introduces a novel intermolecular benzylic C-X (C-N, C-C, and C-Br) bond formation via photoredox benzylic C(sp3)-H bonds. This methodology enables the synthesis of secondary amides, nitriles, and halides through reacting secondary benzylic substrates with readily accessible reagents including BocNH2, benzamide, acetamide, TMSCN, and TBAB. This approach displays the potential of being sustainable and efficient to afford amidation, cyanation, and halogenation products in good yields.
Collapse
Affiliation(s)
- Kumari Swati Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nagender Thadem
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ganesh Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Xu Z, Kovács E. Beyond Traditional Synthesis: Electrochemical Approaches to Amine Oxidation for Nitriles and Imines. ACS ORGANIC & INORGANIC AU 2024; 4:471-484. [PMID: 39371318 PMCID: PMC11450732 DOI: 10.1021/acsorginorgau.4c00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 10/08/2024]
Abstract
The electrochemical oxidation of amines to nitriles and imines represents a critical frontier in organic electrochemistry, offering a sustainable pathway to these valuable compounds. Nitriles and amines are pivotal in various industrial applications, including pharmaceuticals, agrochemicals, and materials science. This review encapsulates the recent advancements in the electrooxidation process, emphasizing mechanistic understanding, electrode material innovations, optimization of reaction conditions, and exploration of solvent and electrolyte systems. Additionally, the review addresses the operational parameters that significantly affect the electrooxidation process, such as current density, temperature, and electrode surface, offering insights into their optimization for enhanced performance. By providing a comprehensive view of the current state and prospects of amine electrooxidation to nitriles and imines, this review aims to inspire further development, innovation, and research in this promising area of green chemistry.
Collapse
Affiliation(s)
- Zhining Xu
- Institute
of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Ervin Kovács
- Institute
of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
3
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
4
|
Huang J, Li X, Liu P, Wei Y, Liu S, Ma X. Selective Oxidative Cleavage of Benzyl C-N Bond under Metal-Free Electrochemical Conditions. Molecules 2024; 29:2851. [PMID: 38930916 PMCID: PMC11206264 DOI: 10.3390/molecules29122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
With the growing significance of green chemistry in organic synthesis, electrochemical oxidation has seen rapid development. Compounds undergo oxidation-reduction reactions through electron transfer at the electrode surface. This article proposes the use of electrochemical methods to achieve cleavage of the benzyl C-N bond. This method selectively oxidatively cleaves the C-N bond without the need for metal catalysts or external oxidants. Additionally, primary, secondary, and tertiary amines exhibit good adaptability under these conditions, utilizing water as the sole source of oxygen.
Collapse
Affiliation(s)
- Jiawei Huang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Xiaoman Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Ping Liu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Yu Wei
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Shuai Liu
- Bingtuan Energy Development Institute, Shihezi University, Shihezi 832003, China
| | - Xiaowei Ma
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| |
Collapse
|
5
|
Zhang W, Liu R, Lv X, Jiang L, Tang S, Liu G, Shen G, Huang X, Ma C, Yang B. Oxidant-Free Electrochemical Direct Oxidative Benzyl Alcohols to Benzyl Aldehydes Using Three-Dimensional Printing PPAR Polyoxometalate. Molecules 2023; 28:6460. [PMID: 37764236 PMCID: PMC10534777 DOI: 10.3390/molecules28186460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The oxidation of benzyl alcohols is an important reaction in organic synthesis. Traditional methods for benzyl alcohol oxidation have not been widely utilized due to the use of significant amounts of precious metals and environmentally unfriendly reagents. In recent years, electrocatalytic oxidation has gained significant attention, particularly electrochemical anodic oxidation, which offers a sustainable alternative for oxidation without the need for external oxidants or reducing agents. Here, a copper monosubstituted phosphotungstate-based polyacrylate resins (Cu-LPOMs@PPAR) catalyst has been fabricated with immobilization and recyclability using 3D printing technology that can be successfully applied in the electrocatalytic oxidation of benzyl alcohol to benzaldehyde, achieving atom economy and reducing pollution. In this protocol, we obtain benzaldehyde in good yields with excellent functional group toleration under metal-free and oxidant-free conditions. This strategy could provide a new avenue for heterogeneous catalysts in application for enhancing the efficiency and selectivity of electrocatalytic oxidation processes.
Collapse
Affiliation(s)
- Wenhui Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (W.Z.); (R.L.); (L.J.); (S.T.); (G.S.); (X.H.)
| | - Ran Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (W.Z.); (R.L.); (L.J.); (S.T.); (G.S.); (X.H.)
| | - Xueyan Lv
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Lirong Jiang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (W.Z.); (R.L.); (L.J.); (S.T.); (G.S.); (X.H.)
| | - Silu Tang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (W.Z.); (R.L.); (L.J.); (S.T.); (G.S.); (X.H.)
| | - Gang Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (W.Z.); (R.L.); (L.J.); (S.T.); (G.S.); (X.H.)
| | - Guodong Shen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (W.Z.); (R.L.); (L.J.); (S.T.); (G.S.); (X.H.)
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (W.Z.); (R.L.); (L.J.); (S.T.); (G.S.); (X.H.)
| | - Chen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Bingchuan Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China; (W.Z.); (R.L.); (L.J.); (S.T.); (G.S.); (X.H.)
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013, China
| |
Collapse
|
6
|
Ali T, Wang H, Iqbal W, Bashir T, Shah R, Hu Y. Electro-Synthesis of Organic Compounds with Heterogeneous Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205077. [PMID: 36398622 PMCID: PMC9811472 DOI: 10.1002/advs.202205077] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Electro-organic synthesis has attracted a lot of attention in pharmaceutical science, medicinal chemistry, and future industrial applications in energy storage and conversion. To date, there has not been a detailed review on electro-organic synthesis with the strategy of heterogeneous catalysis. In this review, the most recent advances in synthesizing value-added chemicals by heterogeneous catalysis are summarized. An overview of electrocatalytic oxidation and reduction processes as well as paired electrocatalysis is provided, and the anodic oxidation of alcohols (monohydric and polyhydric), aldehydes, and amines are discussed. This review also provides in-depth insight into the cathodic reduction of carboxylates, carbon dioxide, CC, C≡C, and reductive coupling reactions. Moreover, the electrocatalytic paired electro-synthesis methods, including parallel paired, sequential divergent paired, and convergent paired electrolysis, are summarized. Additionally, the strategies developed to achieve high electrosynthesis efficiency and the associated challenges are also addressed. It is believed that electro-organic synthesis is a promising direction of organic electrochemistry, offering numerous opportunities to develop new organic reaction methods.
Collapse
Affiliation(s)
- Tariq Ali
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della CalabriaRendeCS87036Italy
| | - Tariq Bashir
- Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006China
| | - Rahim Shah
- Institute of Chemical SciencesUniversity of SwatSwatKhyber Pakhtunkhwa19130Pakistan
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
- Hangzhou Institute of Advanced StudiesZhejiang Normal UniversityHangzhou311231China
| |
Collapse
|
7
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022; 61:e202206308. [DOI: 10.1002/anie.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yiyi Weng
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xiaobin Xu
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Hantao Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Yiyang Zhang
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| | - Xianfeng Zhuo
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou P.R. China
| |
Collapse
|
8
|
Weng Y, Xu X, Chen H, Zhang Y, Zhuo X. Tandem Electrochemical Oxidative Azidation/Heterocyclization of Tryptophan‐Containing Peptides under Buffer Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yiyi Weng
- Zhejiang University of Technology College of Pharmaceutical Science Chaowang road 18 310014 Hangzhou CHINA
| | - Xiaobin Xu
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Hantao Chen
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Yiyang Zhang
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Xianfeng Zhuo
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| |
Collapse
|
9
|
Lee K, Choi H, An J, Kwon K. Stainless steel promoted the electrochemical oxidation of amines into imines. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Keunyoung Lee
- Department of Chemistry Gyeongsang National University (GNU) and Research Institute of Natural Science (RINS) Jinju South Korea
| | - Hyebin Choi
- Department of Chemistry Gyeongsang National University (GNU) and Research Institute of Natural Science (RINS) Jinju South Korea
| | - Jaun An
- Department of Chemistry Gyeongsang National University (GNU) and Research Institute of Natural Science (RINS) Jinju South Korea
| | - Ki‐Young Kwon
- Department of Chemistry Gyeongsang National University (GNU) and Research Institute of Natural Science (RINS) Jinju South Korea
| |
Collapse
|