1
|
Chafin R, Sujan MI, Parkin S, Jurss JW, Huckaba AJ. Light-driven CO 2 reduction with substituted imidazole-pyridine Re catalysts favoring formic acid production. RSC Adv 2025; 15:12547-12556. [PMID: 40264887 PMCID: PMC12012614 DOI: 10.1039/d5ra01561h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/06/2025] [Indexed: 04/24/2025] Open
Abstract
Removing carbon dioxide from the atmosphere is an attractive way to mitigate the greenhouse gas effect that contributes to climate change. A series of donor-pi (D-π), acceptor-pi (A-π), and π Re(i) pyridyl imidazole complexes have been synthesized and examined under photocatalytic conditions for the photocatalytic reduction of CO2. The catalytic activity of the complexes was further supported by cyclic voltammetry through the presence of a catalytic current under CO2 atmosphere. The D-π, π, and A-π complexes were studied to elucidate the effects of incorporating conjugated electron donating vs. withdrawing groups on the catalytic rates and product selectivity. The synthesized complexes were compared with Re(bpy)(CO)3Br (where bpy is 2,2'-bipyridine), the benchmark catalyst for this transformation. Remarkably, the complex with A-π pendant (RC4) outperformed the π (RC2-3) and D-π (RC5) complexes for the production of formic acid (HCO2H) in the presence of photosensitizer [Ru(bpy)3]2+ and sacrificial electron donor BIH (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]-imidazoline). Among the investigated catalysts, RC4 with the A-π pendant showed the highest turnover number (TON) value of 844 for HCO2H production with 86% carbon selectivity. In stark contrast to the imidazole-pyridine based catalysts reported here that favor formic acid as a product, Re(bpy)(CO)3Br generated no formic acid under the same conditions. The imidazole-pyridine complexes also function as catalysts for CO2 reduction without an added photosensitizer, however, the TON values under self-sensitized conditions are poor.
Collapse
Affiliation(s)
- Ryan Chafin
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Majharul Islam Sujan
- Department of Chemistry and Biochemistry, University of Mississippi Mississippi 38677 USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Jonah W Jurss
- Department of Chemistry and Biochemistry, University of Mississippi Mississippi 38677 USA
| | - Aron J Huckaba
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| |
Collapse
|
2
|
Bento MA, Bandeira NAG, Miras HN, Moro AJ, Lima JC, Realista S, Gleeson M, Devid EJ, Brandão P, Rocha J, Martinho PN. Solar Light CO 2 Photoreduction Enhancement by Mononuclear Rhenium(I) Complexes: Characterization and Mechanistic Insights. Inorg Chem 2024; 63:18211-18222. [PMID: 39270003 DOI: 10.1021/acs.inorgchem.4c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The catalytic efficacy of a novel mononuclear rhenium(I) complex in CO2 reduction is remarkable, with a turnover number (TONCO) of 1517 in 3 h, significantly outperforming previous Re(I) catalysts. This complex, synthesized via a substitution reaction on an aromatic ring to form a bromo-bipyridine derivative, L1 = 2-bromo-6-(1H-pyrazol-1-yl)pyridine, and further reacting with [Re(CO)5Cl], results in the facial-tricarbonyl complex [ReL1(CO)3Cl] (1). The light green solid was obtained with an 80% yield and thoroughly characterized using cyclic voltammetry, nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy. Cyclic voltammetry under CO2 atmosphere revealed three distinct redox processes, suggesting the formation of new electroactive compounds. The studies on photoreduction highlighted the ability of the catalyst to reduce CO2, while NMR, FTIR, and electrospray ionization (ESI) mass spectrometry provided insights into the mechanism, revealing the formation of solvent-coordinated complexes and new species under varying conditions. Additionally, computational studies (DFT) were undertaken to better understand the electronic structure and reactivity patterns of 1, focusing on the role of the ligand, the spectroscopic features, and the redox behavior. This comprehensive approach provides insights into the intricate dynamics of CO2 photoreduction, showcasing the potential of Re(I) complexes in catalysis.
Collapse
Affiliation(s)
- Marcos A Bento
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Nuno A G Bandeira
- Biosystems and Integrative Sciences Institute (BioISI), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 8.5.53─C8 Campo Grande, 1749-016 Lisboa, Portugal
| | | | - Artur J Moro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Sciences and Technology (NOVA-FCT), 2829-516 Caparica, Portugal
| | - João Carlos Lima
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Sciences and Technology (NOVA-FCT), 2829-516 Caparica, Portugal
| | - Sara Realista
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Michael Gleeson
- Dutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Edwin J Devid
- Dutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612 AJ Eindhoven, The Netherlands
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - João Rocha
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - Paulo N Martinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Feng Q, Huang C, Chen Z, Huang Z, Huang HH, Hu H, Liang F, Liu D. Electronic Effect Promoted Visible-Light-Driven CO 2-to-CO Conversion in a Water-Containing System. Inorg Chem 2023; 62:21416-21423. [PMID: 38061059 DOI: 10.1021/acs.inorgchem.3c03543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The design of unsaturated nonprecious metal complexes with high catalytic performance for photochemical CO2 reduction is still an important challenge. In this paper, four coordinatively unsaturated Co-salen complexes 1-4 were explored in situ using o-phenylenediamine derivatives and 5-methylsalicylaldehyde as precursors of the ligands in 1-4. It was found that complex 4, bearing a nitro substituent (-NO2) on the aromatic ring of the salen ligand, exhibits the highest photochemical performance for visible-light-driven CO2-to-CO conversion in a water-containing system, with TONCO and CO selectivity values of 5300 and 96%, respectively. DFT calculations and experimental results revealed that the promoted photocatalytic activity of 4 is ascribed to the electron-withdrawing effect of the nitro group in 4 compared to 1-3 (with -CH3, -F, and -H groups, respectively), resulting in a lower reduction potential of active metal centers CoII and lower barriers for CO2 coordination and C-O cleavage steps for 4 than those for catalysts 1-3.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Chunzhao Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Zubing Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Hai-Hua Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Yucai Road No.15, Guilin 541004, China
| |
Collapse
|